Crystal structure of the overlapping dinucleosome composed of hexasome and octasome

Daiki Kato, Akihisa Osakabe, Yasuhiro Arimura, Yuka Mizukami, Naoki Horikoshi, Kazumi Saikusa, Satoko Akashi, Yoshifumi Nishimura, Sam Yong Park, Jumpei Nogami, Kazumitsu Maehara, Yasuyuki Ohkawa, Atsushi Matsumoto, Hidetoshi Kono, Rintaro Inoue, Masaaki Sugiyama, Hitoshi Kurumizaka

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

Nucleosomes are dynamic entities that are repositioned along DNA by chromatin remodeling processes. A nucleosome repositioned by the switch-sucrose nonfermentable (SWI/SNF) remodeler collides with a neighbor and forms the intermediate "overlapping dinucleosome." Here, we report the crystal structure of the overlapping dinucleosome, in which two nucleosomes are associated, at 3.14-angstrom resolution. In the overlapping dinucleosome structure, the unusual "hexasome" nucleosome, composed of the histone hexamer lacking one H2A-H2B dimer from the conventional histone octamer, contacts the canonical "octasome" nucleosome, and they intimately associate. Consequently, about 250 base pairs of DNA are left-handedly wrapped in three turns, without a linker DNA segment between the hexasome and octasome moieties. The overlapping dinucleosome structure may provide important information to understand how nucleosome repositioning occurs during the chromatin remodeling process.

Original languageEnglish
Article number356
Pages (from-to)205-208
Number of pages4
JournalScience
Volume356
Issue number6334
DOIs
Publication statusPublished - Apr 14 2017

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Crystal structure of the overlapping dinucleosome composed of hexasome and octasome'. Together they form a unique fingerprint.

Cite this