Crystal structures of two nickel compounds comprising neutral NiII hydrazone complexes and dicarboxylic acids

Takumi Nakanishi, Osamu Sato

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Two isostructural NiII compounds, bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2 N′,O}nickel(II)-2,5-dichloroterephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Cl2O4), and bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2 N′,O}nickel(II)-2,5-dibromoterephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Br2O4), were synthesized and their crystal structures determined. The pair of N,N′,O-tridentate N-[1-(pyridin-2-yl-κN)ethyl]pyridine-4-carbohydrazonate L ligands result in a cis-NiO2N4 octahedral coordination sphere for the metal ions. The asymmetric units consist of two half-molecules of the dicarboxylic acids, which are completed by crystallographic inversion symmetry. In the respective crystals, the 2,5-dichloroterephthalic acid (H2Cl2TPA, 1-Cl) molecules form zigzag hydrogen-bonded chains with the [Ni(L)2] molecules, with the hydrogen-bond distances in 1-Br slightly longer than those in 1-Cl. The packing is consolidated by aromatic π-π stacking between the dicarboxylic acid molecules and terminal pyridine rings in [Ni(L)2] and short halogen-halogen interactions are also observed. The qualitative prediction of the H-atom position from the C - N - C angles of the terminal pyridine rings in L and the C - O distances in the carboxyl groups show that 1-Cl and 1-Br are co-crystals rather than salts.

Original languageEnglish
Pages (from-to)103-106
Number of pages4
JournalActa Crystallographica Section E: Crystallographic Communications
Volume73
DOIs
Publication statusPublished - Jan 1 2017

Fingerprint

Nickel compounds
nickel compounds
Hydrazones
Dicarboxylic Acids
hydrazones
dicarboxylic acids
Pyridine
pyridines
Crystal structure
acids
crystal structure
Acids
Molecules
Halogens
Nickel
halogens
molecules
nickel
Crystals
rings

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Cite this

@article{599ed72d80e34208aab3c2bc97f81d48,
title = "Crystal structures of two nickel compounds comprising neutral NiII hydrazone complexes and dicarboxylic acids",
abstract = "Two isostructural NiII compounds, bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2 N′,O}nickel(II)-2,5-dichloroterephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Cl2O4), and bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2 N′,O}nickel(II)-2,5-dibromoterephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Br2O4), were synthesized and their crystal structures determined. The pair of N,N′,O-tridentate N-[1-(pyridin-2-yl-κN)ethyl]pyridine-4-carbohydrazonate L ligands result in a cis-NiO2N4 octahedral coordination sphere for the metal ions. The asymmetric units consist of two half-molecules of the dicarboxylic acids, which are completed by crystallographic inversion symmetry. In the respective crystals, the 2,5-dichloroterephthalic acid (H2Cl2TPA, 1-Cl) molecules form zigzag hydrogen-bonded chains with the [Ni(L)2] molecules, with the hydrogen-bond distances in 1-Br slightly longer than those in 1-Cl. The packing is consolidated by aromatic π-π stacking between the dicarboxylic acid molecules and terminal pyridine rings in [Ni(L)2] and short halogen-halogen interactions are also observed. The qualitative prediction of the H-atom position from the C - N - C angles of the terminal pyridine rings in L and the C - O distances in the carboxyl groups show that 1-Cl and 1-Br are co-crystals rather than salts.",
author = "Takumi Nakanishi and Osamu Sato",
year = "2017",
month = "1",
day = "1",
doi = "10.1107/S2056989016020326",
language = "English",
volume = "73",
pages = "103--106",
journal = "Acta Crystallographica Section E: Crystallographic Communications",
issn = "2056-9890",
publisher = "International Union of Crystallography",

}

TY - JOUR

T1 - Crystal structures of two nickel compounds comprising neutral NiII hydrazone complexes and dicarboxylic acids

AU - Nakanishi, Takumi

AU - Sato, Osamu

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Two isostructural NiII compounds, bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2 N′,O}nickel(II)-2,5-dichloroterephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Cl2O4), and bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2 N′,O}nickel(II)-2,5-dibromoterephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Br2O4), were synthesized and their crystal structures determined. The pair of N,N′,O-tridentate N-[1-(pyridin-2-yl-κN)ethyl]pyridine-4-carbohydrazonate L ligands result in a cis-NiO2N4 octahedral coordination sphere for the metal ions. The asymmetric units consist of two half-molecules of the dicarboxylic acids, which are completed by crystallographic inversion symmetry. In the respective crystals, the 2,5-dichloroterephthalic acid (H2Cl2TPA, 1-Cl) molecules form zigzag hydrogen-bonded chains with the [Ni(L)2] molecules, with the hydrogen-bond distances in 1-Br slightly longer than those in 1-Cl. The packing is consolidated by aromatic π-π stacking between the dicarboxylic acid molecules and terminal pyridine rings in [Ni(L)2] and short halogen-halogen interactions are also observed. The qualitative prediction of the H-atom position from the C - N - C angles of the terminal pyridine rings in L and the C - O distances in the carboxyl groups show that 1-Cl and 1-Br are co-crystals rather than salts.

AB - Two isostructural NiII compounds, bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2 N′,O}nickel(II)-2,5-dichloroterephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Cl2O4), and bis{N-[1-(pyridin-2-yl-κN)ethylidene]pyridine-4-carbohydrazonato-κ2 N′,O}nickel(II)-2,5-dibromoterephthalic acid (1/1), [Ni(C13H11N4O)2](C8H4Br2O4), were synthesized and their crystal structures determined. The pair of N,N′,O-tridentate N-[1-(pyridin-2-yl-κN)ethyl]pyridine-4-carbohydrazonate L ligands result in a cis-NiO2N4 octahedral coordination sphere for the metal ions. The asymmetric units consist of two half-molecules of the dicarboxylic acids, which are completed by crystallographic inversion symmetry. In the respective crystals, the 2,5-dichloroterephthalic acid (H2Cl2TPA, 1-Cl) molecules form zigzag hydrogen-bonded chains with the [Ni(L)2] molecules, with the hydrogen-bond distances in 1-Br slightly longer than those in 1-Cl. The packing is consolidated by aromatic π-π stacking between the dicarboxylic acid molecules and terminal pyridine rings in [Ni(L)2] and short halogen-halogen interactions are also observed. The qualitative prediction of the H-atom position from the C - N - C angles of the terminal pyridine rings in L and the C - O distances in the carboxyl groups show that 1-Cl and 1-Br are co-crystals rather than salts.

UR - http://www.scopus.com/inward/record.url?scp=85011586173&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85011586173&partnerID=8YFLogxK

U2 - 10.1107/S2056989016020326

DO - 10.1107/S2056989016020326

M3 - Article

AN - SCOPUS:85011586173

VL - 73

SP - 103

EP - 106

JO - Acta Crystallographica Section E: Crystallographic Communications

JF - Acta Crystallographica Section E: Crystallographic Communications

SN - 2056-9890

ER -