Cu–S-based thermoelectric compounds with a sphalerite-derived disordered crystal structure

Shota Hirayama, Koichiro Suekuni, Philipp Sauerschnig, Michihiro Ohta, Michitaka Ohtaki

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Low lattice thermal conductivity is observed in compounds having disordered atomic configurations in their crystal structures. At temperatures above 300 ​K, a Cu–S-based semiconducting compound, Cu3.1Nb0.25Sn0.9S4, with a sphalerite-derived disordered structure, exhibits thermal conductivity less than 1 ​W ​K−1 ​m−1. In this study, we synthesized and tested the thermoelectric properties of the hole-doped derivatives, Cu3.1Nb0.25−xTixSn0.9S4 (x ​= ​0, 0.125, 0.25) and Cu3.1Ti0.1875Sn0.9S4, up to 673 ​K. The hole-carrier doping decreased the electrical resistivity, improving the power factor. Cu3.1Ti0.25Sn0.9S4 shows a dimensionless figure of merit ZT of 0.1/0.6 ​at 300/673 ​K due to its inherent low lattice thermal conductivity and improved power factor. The thermoelectric properties of the Cu3.1Nb0.25Sn0.9S4-based compounds were compared with those of Cu3SbS4-based compounds with an ordered arrangement of Cu atoms in a similar sphalerite-derived structure, showing that the disordered atomic arrangement is responsible for the enhanced scatterings of both phonons and electrons.

Original languageEnglish
Article number122960
JournalJournal of Solid State Chemistry
Volume309
DOIs
Publication statusPublished - May 2022

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Cu–S-based thermoelectric compounds with a sphalerite-derived disordered crystal structure'. Together they form a unique fingerprint.

Cite this