TY - JOUR
T1 - Daily and annual shell growth in a long-lived freshwater bivalve as a proxy for winter snowpack
AU - Watanabe, Tsuyoshi
AU - Suzuki, Mayumi
AU - Komoto, Yoshihiko
AU - Shirai, Kotaro
AU - Yamazaki, Atsuko
N1 - Funding Information:
We thank Dr. T. Awakura, Dr. Y. Akiyama, and Prof. B.R. Schöne for helpful suggestions and discussions of our study. Daily monitoring data from the Shiribetsu River were provided by the Ministry of Land, Infrastructure and Transport, Japan. We thank Y. Sasaki and C. Nara for assistance with references and figure drawing and K. Little for English correction and improvement. This research was funded by the Foundation of River and Watershed Environment Management .
Publisher Copyright:
© 2021
PY - 2021/5/1
Y1 - 2021/5/1
N2 - To assess the potential of long-lived freshwater bivalve shells as a proxy for river environments, we examined daily and annual growth increments and analysed trace elements in the shells of Margaritifera laevis collected alive from the Shiribetsu River, located in the central western region of Hokkaido, Japan. The sum of the daily growth lines within a single annual increment corresponded to the days when the average daily water temperature was greater than 9 °C, suggesting that shell deposition occurred from spring to autumn. The growing degree days (GDD) are correlated with the maximum snow depth in winter and the average river discharge in spring. We conducted trace element microanalysis across daily and annual growth increments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and compared the results with in situ environmental data. Sharp peaks in the barium/calcium ratio (Ba/Ca) observed during spring river discharge also suggest that the growth of Margaritifera shells is influenced by winter snow volume and meltwater. A 67-year profile of the standard growth index (SGI) estimated from twelve individual annual growth histories correlates to the annual snowfall accumulation. Distinct decadal variability is observed in the SGI and synchronized with the North Pacific Index and Pacific Decadal Oscillation. Sclerochronological approaches using Margaritifera shells could be valuable for reconstructing river and atmospheric conditions during the winter season, which is influenced by the Asian winter monsoon in the central Hokkaido region.
AB - To assess the potential of long-lived freshwater bivalve shells as a proxy for river environments, we examined daily and annual growth increments and analysed trace elements in the shells of Margaritifera laevis collected alive from the Shiribetsu River, located in the central western region of Hokkaido, Japan. The sum of the daily growth lines within a single annual increment corresponded to the days when the average daily water temperature was greater than 9 °C, suggesting that shell deposition occurred from spring to autumn. The growing degree days (GDD) are correlated with the maximum snow depth in winter and the average river discharge in spring. We conducted trace element microanalysis across daily and annual growth increments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and compared the results with in situ environmental data. Sharp peaks in the barium/calcium ratio (Ba/Ca) observed during spring river discharge also suggest that the growth of Margaritifera shells is influenced by winter snow volume and meltwater. A 67-year profile of the standard growth index (SGI) estimated from twelve individual annual growth histories correlates to the annual snowfall accumulation. Distinct decadal variability is observed in the SGI and synchronized with the North Pacific Index and Pacific Decadal Oscillation. Sclerochronological approaches using Margaritifera shells could be valuable for reconstructing river and atmospheric conditions during the winter season, which is influenced by the Asian winter monsoon in the central Hokkaido region.
UR - http://www.scopus.com/inward/record.url?scp=85102571685&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102571685&partnerID=8YFLogxK
U2 - 10.1016/j.palaeo.2021.110346
DO - 10.1016/j.palaeo.2021.110346
M3 - Article
AN - SCOPUS:85102571685
SN - 0031-0182
VL - 569
JO - Palaeogeography, Palaeoclimatology, Palaeoecology
JF - Palaeogeography, Palaeoclimatology, Palaeoecology
M1 - 110346
ER -