Data-driven spectral analysis for coordinative structures in periodic systems with unknown and redundant dynamics

Keisuke Fujii, Naoya Takeishi, Benio Kibushi, Motoki Kouzaki, Yoshinobu Kawahara

Research output: Contribution to journalArticlepeer-review

Abstract

Living organisms dynamically and flexibly operate a great number of components. As one of such redundant control mechanisms, low-dimensional coordinative structures among multiple components have been investigated. However, structures extracted from the conventional statistical dimensionality reduction methods do not reflect dynamical properties in principle. Here we regard coordinative structures in biological periodic systems with unknown and redundant dynamics as a nonlinear limit-cycle oscillation, and apply a data-driven operator-theoretic spectral analysis, which obtains dynamical properties of coordinative structures such as frequency and phase from the estimated eigenvalues and eigenfunctions of a composition operator. First, from intersegmental angles during human walking, we extracted the speed-independent harmonics of gait frequency. Second, we discovered the speed-dependent time-evolving behaviors of the phase on the conventional low-dimensional structures by estimating the eigenfunctions. Our approach contributes to the understanding of biological periodic phenomena with unknown and redundant dynamics from the perspective of nonlinear dynamical systems.

Original languageEnglish
JournalUnknown Journal
DOIs
Publication statusPublished - Jan 4 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Data-driven spectral analysis for coordinative structures in periodic systems with unknown and redundant dynamics'. Together they form a unique fingerprint.

Cite this