DEEPMIX: ONLINE AUTO DATA AUGMENTATION FOR ROBUST VISUAL OBJECT TRACKING

Ziyi Cheng, Xuhong Ren, Felix Juefei-Xu, Wanli Xue, Qing Guo, Lei Ma, Jianjun Zhao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Online updating of the object model via samples from historical frames is of great importance for accurate visual object tracking. Recent works mainly focus on constructing effective and efficient updating methods while neglecting the training samples for learning discriminative object models, which is also a key part of a learning problem. In this paper, we propose the DeepMix that takes historical samples' embeddings as input and generates augmented embeddings online, enhancing the state-of-the-art online learning methods for visual object tracking. More specifically, we first propose the online data augmentation for tracking that online augments the historical samples through object-aware filtering. Then, we propose MixNet which is an offline trained network for performing online data augmentation within one-step, enhancing the tracking accuracy while preserving high speeds of the state-of-the-art online learning methods. The extensive experiments on three different tracking frameworks, i.e., DiMP, DSiam, and SiamRPN++, and three large-scale and challenging datasets, i.e., OTB-2015, LaSOT, and VOT, demonstrate the effectiveness and advantages of the proposed method.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Multimedia and Expo, ICME 2021
PublisherIEEE Computer Society
ISBN (Electronic)9781665438643
DOIs
Publication statusPublished - 2021
Event2021 IEEE International Conference on Multimedia and Expo, ICME 2021 - Shenzhen, China
Duration: Jul 5 2021Jul 9 2021

Publication series

NameProceedings - IEEE International Conference on Multimedia and Expo
ISSN (Print)1945-7871
ISSN (Electronic)1945-788X

Conference

Conference2021 IEEE International Conference on Multimedia and Expo, ICME 2021
Country/TerritoryChina
CityShenzhen
Period7/5/217/9/21

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'DEEPMIX: ONLINE AUTO DATA AUGMENTATION FOR ROBUST VISUAL OBJECT TRACKING'. Together they form a unique fingerprint.

Cite this