Demonstration of surface resistance mapping of large-area HTS films using the dielectric resonator method

M. Kusunoki, Y. Takano, K. Nakamura, M. Inadomaru, D. Kosaka, A. Nozaki, S. Abe, M. Yokoo, M. Lorenz, H. Hochmuth, Masashi Mukaida, S. Ohshima

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

A scanning mapping technique of surface resistance (Rs) using the sapphire dielectric resonator was developed and demonstrated for a 3-inch-diameter YBa2Cu3Oy film. The area of the 3-inch film was divided by 5 × 5 mm grid for scan, resulting in 101 measurement points. Values of Rs in the film varied from 2.9 to 3.8 mΩ at 22 GHz and 77 K. The distribution of Rs corresponded to that of the critical current density. Sampling of quality factors at each point was performed using non-contact measurement between film and sapphire. Since the airtight chamber was filled with dry N2 gas to avoid film degradation by frost and water during the warming process, perfect non-destructive measurement is realized. Fluctuation of distance between the surface of film and dielectric rod was monitored by resonance frequency. Errors in Rs caused by the fluctuation were calculated within ±0.01 mΩ. Furthermore, the system could detect a small (0.3 mm × 0.5 mm) scratch defect as well as the gradient of film thickness on Ag film. This technique is effective for inspection of large-area high temperature superconducting films for microwave applications.

Original languageEnglish
Pages (from-to)374-378
Number of pages5
JournalPhysica C: Superconductivity and its applications
Volume383
Issue number4
DOIs
Publication statusPublished - Jan 1 2003
Externally publishedYes

Fingerprint

Surface resistance
Dielectric resonators
Demonstrations
resonators
Aluminum Oxide
Sapphire
sapphire
frost
Superconducting films
superconducting films
Film thickness
Q factors
inspection
critical current
film thickness
rods
chambers
Gases
Inspection
sampling

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Cite this

Demonstration of surface resistance mapping of large-area HTS films using the dielectric resonator method. / Kusunoki, M.; Takano, Y.; Nakamura, K.; Inadomaru, M.; Kosaka, D.; Nozaki, A.; Abe, S.; Yokoo, M.; Lorenz, M.; Hochmuth, H.; Mukaida, Masashi; Ohshima, S.

In: Physica C: Superconductivity and its applications, Vol. 383, No. 4, 01.01.2003, p. 374-378.

Research output: Contribution to journalArticle

Kusunoki, M, Takano, Y, Nakamura, K, Inadomaru, M, Kosaka, D, Nozaki, A, Abe, S, Yokoo, M, Lorenz, M, Hochmuth, H, Mukaida, M & Ohshima, S 2003, 'Demonstration of surface resistance mapping of large-area HTS films using the dielectric resonator method', Physica C: Superconductivity and its applications, vol. 383, no. 4, pp. 374-378. https://doi.org/10.1016/S0921-4534(02)01347-3
Kusunoki, M. ; Takano, Y. ; Nakamura, K. ; Inadomaru, M. ; Kosaka, D. ; Nozaki, A. ; Abe, S. ; Yokoo, M. ; Lorenz, M. ; Hochmuth, H. ; Mukaida, Masashi ; Ohshima, S. / Demonstration of surface resistance mapping of large-area HTS films using the dielectric resonator method. In: Physica C: Superconductivity and its applications. 2003 ; Vol. 383, No. 4. pp. 374-378.
@article{06443d8b151d4cc0affa8da0dd15c134,
title = "Demonstration of surface resistance mapping of large-area HTS films using the dielectric resonator method",
abstract = "A scanning mapping technique of surface resistance (Rs) using the sapphire dielectric resonator was developed and demonstrated for a 3-inch-diameter YBa2Cu3Oy film. The area of the 3-inch film was divided by 5 × 5 mm grid for scan, resulting in 101 measurement points. Values of Rs in the film varied from 2.9 to 3.8 mΩ at 22 GHz and 77 K. The distribution of Rs corresponded to that of the critical current density. Sampling of quality factors at each point was performed using non-contact measurement between film and sapphire. Since the airtight chamber was filled with dry N2 gas to avoid film degradation by frost and water during the warming process, perfect non-destructive measurement is realized. Fluctuation of distance between the surface of film and dielectric rod was monitored by resonance frequency. Errors in Rs caused by the fluctuation were calculated within ±0.01 mΩ. Furthermore, the system could detect a small (0.3 mm × 0.5 mm) scratch defect as well as the gradient of film thickness on Ag film. This technique is effective for inspection of large-area high temperature superconducting films for microwave applications.",
author = "M. Kusunoki and Y. Takano and K. Nakamura and M. Inadomaru and D. Kosaka and A. Nozaki and S. Abe and M. Yokoo and M. Lorenz and H. Hochmuth and Masashi Mukaida and S. Ohshima",
year = "2003",
month = "1",
day = "1",
doi = "10.1016/S0921-4534(02)01347-3",
language = "English",
volume = "383",
pages = "374--378",
journal = "Physica C: Superconductivity and its Applications",
issn = "0921-4534",
publisher = "Elsevier",
number = "4",

}

TY - JOUR

T1 - Demonstration of surface resistance mapping of large-area HTS films using the dielectric resonator method

AU - Kusunoki, M.

AU - Takano, Y.

AU - Nakamura, K.

AU - Inadomaru, M.

AU - Kosaka, D.

AU - Nozaki, A.

AU - Abe, S.

AU - Yokoo, M.

AU - Lorenz, M.

AU - Hochmuth, H.

AU - Mukaida, Masashi

AU - Ohshima, S.

PY - 2003/1/1

Y1 - 2003/1/1

N2 - A scanning mapping technique of surface resistance (Rs) using the sapphire dielectric resonator was developed and demonstrated for a 3-inch-diameter YBa2Cu3Oy film. The area of the 3-inch film was divided by 5 × 5 mm grid for scan, resulting in 101 measurement points. Values of Rs in the film varied from 2.9 to 3.8 mΩ at 22 GHz and 77 K. The distribution of Rs corresponded to that of the critical current density. Sampling of quality factors at each point was performed using non-contact measurement between film and sapphire. Since the airtight chamber was filled with dry N2 gas to avoid film degradation by frost and water during the warming process, perfect non-destructive measurement is realized. Fluctuation of distance between the surface of film and dielectric rod was monitored by resonance frequency. Errors in Rs caused by the fluctuation were calculated within ±0.01 mΩ. Furthermore, the system could detect a small (0.3 mm × 0.5 mm) scratch defect as well as the gradient of film thickness on Ag film. This technique is effective for inspection of large-area high temperature superconducting films for microwave applications.

AB - A scanning mapping technique of surface resistance (Rs) using the sapphire dielectric resonator was developed and demonstrated for a 3-inch-diameter YBa2Cu3Oy film. The area of the 3-inch film was divided by 5 × 5 mm grid for scan, resulting in 101 measurement points. Values of Rs in the film varied from 2.9 to 3.8 mΩ at 22 GHz and 77 K. The distribution of Rs corresponded to that of the critical current density. Sampling of quality factors at each point was performed using non-contact measurement between film and sapphire. Since the airtight chamber was filled with dry N2 gas to avoid film degradation by frost and water during the warming process, perfect non-destructive measurement is realized. Fluctuation of distance between the surface of film and dielectric rod was monitored by resonance frequency. Errors in Rs caused by the fluctuation were calculated within ±0.01 mΩ. Furthermore, the system could detect a small (0.3 mm × 0.5 mm) scratch defect as well as the gradient of film thickness on Ag film. This technique is effective for inspection of large-area high temperature superconducting films for microwave applications.

UR - http://www.scopus.com/inward/record.url?scp=0037216191&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037216191&partnerID=8YFLogxK

U2 - 10.1016/S0921-4534(02)01347-3

DO - 10.1016/S0921-4534(02)01347-3

M3 - Article

AN - SCOPUS:0037216191

VL - 383

SP - 374

EP - 378

JO - Physica C: Superconductivity and its Applications

JF - Physica C: Superconductivity and its Applications

SN - 0921-4534

IS - 4

ER -