TY - JOUR
T1 - Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices
AU - Shibayama, Seishi
AU - Higuchi, Hiroki
AU - Okumura, Yasushi
AU - Kikuchi, Hirotsugu
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013/5/20
Y1 - 2013/5/20
N2 - Liquid crystalline blue phases (BPs) show excellent potential for application in tunable photonic devices because they possess the unique optical property that the selective 3D Bragg diffraction in a visible wavelength region can be continuously shifted using an electric field. A new approach to simultaneously extend the wavelength range of field-induced Bragg diffraction shift and the temperature range of thermodynamically stable BPs is critically needed. Here, a new BP material system is shown using a dendron molecule to extend simultaneously the two BP ranges. One is the temperature range of thermodynamically stable BPs, which is expanded from 2.1 to 4.6 °C. The other is the reversible maximum shift range of Bragg wavelength on the electric field, which is extended from 85 to 109 nm. The physical mechanism of the dendron-stabilizing effect in BPs is discussed in terms of elastic property and orientational order of liquid crystal molecules. Liquid crystalline blue phases have great potential for advanced applications in tunable photonic devices. A new material system is developed with a dendron molecule, simultaneously enabling both the enlargement of the temperature range of thermodynamically stable blue phases and the continuously reversible maximum shift range of Bragg reflection in a visible wavelength region under an electric field.
AB - Liquid crystalline blue phases (BPs) show excellent potential for application in tunable photonic devices because they possess the unique optical property that the selective 3D Bragg diffraction in a visible wavelength region can be continuously shifted using an electric field. A new approach to simultaneously extend the wavelength range of field-induced Bragg diffraction shift and the temperature range of thermodynamically stable BPs is critically needed. Here, a new BP material system is shown using a dendron molecule to extend simultaneously the two BP ranges. One is the temperature range of thermodynamically stable BPs, which is expanded from 2.1 to 4.6 °C. The other is the reversible maximum shift range of Bragg wavelength on the electric field, which is extended from 85 to 109 nm. The physical mechanism of the dendron-stabilizing effect in BPs is discussed in terms of elastic property and orientational order of liquid crystal molecules. Liquid crystalline blue phases have great potential for advanced applications in tunable photonic devices. A new material system is developed with a dendron molecule, simultaneously enabling both the enlargement of the temperature range of thermodynamically stable blue phases and the continuously reversible maximum shift range of Bragg reflection in a visible wavelength region under an electric field.
UR - http://www.scopus.com/inward/record.url?scp=84877763217&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877763217&partnerID=8YFLogxK
U2 - 10.1002/adfm.201202497
DO - 10.1002/adfm.201202497
M3 - Article
AN - SCOPUS:84877763217
VL - 23
SP - 2387
EP - 2396
JO - Advanced Functional Materials
JF - Advanced Functional Materials
SN - 1616-301X
IS - 19
ER -