Density of states scaling at the semimetal to metal transition in three dimensional topological insulators

Koji Kobayashi, Tomi Ohtsuki, Ken Ichiro Imura, Igor F. Herbut

Research output: Contribution to journalArticlepeer-review

142 Citations (Scopus)

Abstract

The quantum phase transition between the three dimensional Dirac semimetal and the diffusive metal can be induced by increasing disorder. Taking the system of a disordered Z2 topological insulator as an important example, we compute the single particle density of states by the kernel polynomial method. We focus on three regions: the Dirac semimetal at the phase boundary between two topologically distinct phases, the tricritical point of the two topological insulator phases and the diffusive metal, and the diffusive metal lying at strong disorder. The density of states obeys a novel single parameter scaling, collapsing onto two branches of a universal scaling function, which correspond to the Dirac semimetal and the diffusive metal. The diverging length scale critical exponent ν and the dynamical critical exponent z are estimated, and found to differ significantly from those for the conventional Anderson transition. Critical behavior of experimentally observable quantities near and at the tricritical point is also discussed.

Original languageEnglish
Article number016402
JournalPhysical review letters
Volume112
Issue number1
DOIs
Publication statusPublished - Jan 7 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Density of states scaling at the semimetal to metal transition in three dimensional topological insulators'. Together they form a unique fingerprint.

Cite this