Density-tunable conjugation of cyclic RGD ligands with polyion complex vesicles for the neovascular imaging of orthotopic glioblastomas

Wataru Kawamura, Yutaka Miura, Daisuke Kokuryo, Kazuko Toh, Naoki Yamada, Takahiro Nomoto, Yu Matsumoto, Daiki Sueyoshi, Xueying Liu, Ichio Aoki, Mitsunobu R. Kano, Nobuhiro Nishiyama, Tsuneo Saga, Akihiro Kishimura, Kazunori Kataoka

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Introduction of ligands into 100 nm scaled hollow capsules has great potential for diagnostic and therapeutic applications in drug delivery systems. Polyethylene glycol-conjugated (PEGylated) polyion complex vesicles (PICsomes) are promising hollow nano-capsules that can survive for long periods in the blood circulation and can be used to deliver water-soluble macromolecules to target tissues. In this study, cyclic RGD (cRGD) peptide, which is specifically recognized by Vβ3 and vβ5 integrins that are expressed at high levels in the neovascular system, was conjugated onto the distal end of PEG strands on PICsomes for active neovascular targeting. Density-tunable cRGD-conjugation was achieved using PICsomes with definite fraction of end-functionalized PEG, to substitute 20, 40, and 100% of PEG distal end of the PICsomes to cRGD moieties. Compared with control-PICsomes without cRGD, cRGD-PICsomes exhibited increased uptake into human umbilical vein endothelial cells. Intravital confocal laser scanning microscopy revealed that the 40%-cRGD-PICsomes accumulated mainly in the tumor neovasculature and remained in the perivascular region even after 24 h. Furthermore, we prepared superparamagnetic iron oxide (SPIO)-loaded cRGD-PICsomes for magnetic resonance imaging (MRI) and successfully visualized the neovasculature in an orthotopic glioblastoma model, which suggests that SPIO-loaded cRGD-PICsomes might be useful as a MRI contrast reagent for imaging of the tumor microenvironment, including neovascular regions that overexpress Vβ3 integrins.

Original languageEnglish
Article number035004
JournalScience and Technology of Advanced Materials
Volume16
Issue number3
DOIs
Publication statusPublished - Jun 1 2015

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Density-tunable conjugation of cyclic RGD ligands with polyion complex vesicles for the neovascular imaging of orthotopic glioblastomas'. Together they form a unique fingerprint.

  • Cite this

    Kawamura, W., Miura, Y., Kokuryo, D., Toh, K., Yamada, N., Nomoto, T., Matsumoto, Y., Sueyoshi, D., Liu, X., Aoki, I., Kano, M. R., Nishiyama, N., Saga, T., Kishimura, A., & Kataoka, K. (2015). Density-tunable conjugation of cyclic RGD ligands with polyion complex vesicles for the neovascular imaging of orthotopic glioblastomas. Science and Technology of Advanced Materials, 16(3), [035004]. https://doi.org/10.1088/1468-6996/16/3/035004