Design and performance of an innovative four-bed, three-stage adsorption cycle

Abul Fazal Mohammad Mizanur Rahman, Yuki Ueda, Atsushi Akisawa, Takahiko Miyazaki, Bidyut Baran Saha

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    The design of a four-bed three-stage adsorption cycle has been proposed to reduce the volume of the six-bed three-stage adsorption cycle. A simulation model for the proposed innovative cycle was developed to analyse the influence of cycle time on the system performance identifying the specific cooling power (SCP) and coefficient of performance (COP). A particle swarm optimization (PSO) technique was used to optimize the cycle time enabling us to maximize the SCP. PSO results showed that the optimal cycle time was decreased with heat source temperature and SCP value was proportional to heat source temperature. It was found that the proposed cycle could be driven by waste heat as low as 40 °C, along with coolant at 30 °C. Comparative study of optimized result indicated that the proposed cycle increased the performance significantly over a whole range of temperatures from 40 to 70 °C and reduced two adsorbent beds, compared to the six-bed three-stage cycle.

    Original languageEnglish
    Pages (from-to)1365-1384
    Number of pages20
    JournalEnergies
    Volume6
    Issue number3
    DOIs
    Publication statusPublished - Mar 2013

    All Science Journal Classification (ASJC) codes

    • Renewable Energy, Sustainability and the Environment
    • Energy Engineering and Power Technology
    • Energy (miscellaneous)
    • Control and Optimization
    • Electrical and Electronic Engineering

    Fingerprint Dive into the research topics of 'Design and performance of an innovative four-bed, three-stage adsorption cycle'. Together they form a unique fingerprint.

    Cite this