Design Guidelines to Elongate Spin-Lattice Relaxation Times of Porphyrins with Large Triplet Electron Polarization

Akio Yamauchi, Saiya Fujiwara, Koki Nishimura, Yoichi Sasaki, Kenichiro Tateishi, Tomohiro Uesaka, Nobuo Kimizuka, Nobuhiro Yanai

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The spin-polarized triplet state generated by light irradiation has potential for applications such as triplet dynamic nuclear polarization (triplet-DNP). Recently, we have reported free-base porphyrins as versatile and biocompatible polarizing agents for triplet-DNP. However, the electron polarization of free-base porphyrins is not very high, and the dilemma is that the high polarization of metalloporphyrins is accompanied by a too short spin-lattice relaxation time to be used for triplet-DNP. We report here that the introduction of electron-withdrawing fluorine groups into Zn porphyrins enables a long enough spin-lattice relaxation time (>1 μs) while maintaining a high polarization (Px:Py:Pz = 0:0:1.0) at room temperature. Interestingly, the spin-lattice relaxation time of Zn porphyrin becomes much longer by introducing fluorine substituents, whereas the spin-lattice relaxation time of free-base porphyrin becomes shorter by the fluorine substitution. Theoretical calculations suggest that this is because the introduction of the electron-withdrawing fluorine substituents reduces the spin density on Zn atoms and weakens the spin-orbit interaction.

    Original languageEnglish
    JournalJournal of Physical Chemistry A
    DOIs
    Publication statusAccepted/In press - 2021

    All Science Journal Classification (ASJC) codes

    • Physical and Theoretical Chemistry

    Fingerprint

    Dive into the research topics of 'Design Guidelines to Elongate Spin-Lattice Relaxation Times of Porphyrins with Large Triplet Electron Polarization'. Together they form a unique fingerprint.

    Cite this