TY - GEN
T1 - Design of a 3D wing honeycomb core based on origami techniques
AU - Saito, Kazuya
AU - Fujimoto, Akinobu
AU - Okabe, Yoji
N1 - Funding Information:
This work has been supported by A-STEP (AS2715056S) by Japan Science and Technology Agency. The 3D wing model was provided by Dr. T. Hirobe.
Publisher Copyright:
© Copyright 2016 by ASME.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2016
Y1 - 2016
N2 - Honeycomb cores, which offer substantial weight reductions in design, are used in various engineering fields. For antenna reflector and rotor blade designs, Three-dimensional (3D) honeycomb cores are in considerable demand. 3D honeycombs are typically manufactured by curving or carving flat honeycombs. High associated manufacturing costs have limited their application. The authors of this paper investigated a new honeycomb design and manufacturing method called "kirigami honeycomb." Resembling origami, kirigami honeycomb allows a single flat sheet of material with periodic slits to be folded into a honeycomb shape. Previous studies have reported successful use of this method to create various honeycomb shapes, changing only the folding line diagrams (FLDs). These previous studies have, however, considered only one-directional crosssection modifications; the core thickness and curvature changed in only the W-direction. This study proposes a new method that will support complex 3D double-curved honeycomb designs made from single flat sheets. A newly defined crease pattern conversion method provides arbitrary scaling of the honeycomb shape in the L-direction. The combined FLD and pattern conversion design methods encourage the cost-effective manufacture of 3D wing shaped honeycombs from single flat paper sheets. Wind or tidal power generation industries that use rotor blades could benefit from this design.
AB - Honeycomb cores, which offer substantial weight reductions in design, are used in various engineering fields. For antenna reflector and rotor blade designs, Three-dimensional (3D) honeycomb cores are in considerable demand. 3D honeycombs are typically manufactured by curving or carving flat honeycombs. High associated manufacturing costs have limited their application. The authors of this paper investigated a new honeycomb design and manufacturing method called "kirigami honeycomb." Resembling origami, kirigami honeycomb allows a single flat sheet of material with periodic slits to be folded into a honeycomb shape. Previous studies have reported successful use of this method to create various honeycomb shapes, changing only the folding line diagrams (FLDs). These previous studies have, however, considered only one-directional crosssection modifications; the core thickness and curvature changed in only the W-direction. This study proposes a new method that will support complex 3D double-curved honeycomb designs made from single flat sheets. A newly defined crease pattern conversion method provides arbitrary scaling of the honeycomb shape in the L-direction. The combined FLD and pattern conversion design methods encourage the cost-effective manufacture of 3D wing shaped honeycombs from single flat paper sheets. Wind or tidal power generation industries that use rotor blades could benefit from this design.
UR - http://www.scopus.com/inward/record.url?scp=85007574332&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85007574332&partnerID=8YFLogxK
U2 - 10.1115/DETC2016-60419
DO - 10.1115/DETC2016-60419
M3 - Conference contribution
AN - SCOPUS:85007574332
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 40th Mechanisms and Robotics Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
Y2 - 21 August 2016 through 24 August 2016
ER -