TY - JOUR
T1 - Designing Local Microwave Heating of Metal Nanoparticles/Metal Oxide Substrate Composites
AU - Ano, Taishi
AU - Tsubaki, Shuntaro
AU - Fujii, Satoshi
AU - Wada, Yuji
N1 - Funding Information:
This work was supported in part by a JSPS Grant-in-Aid for Scientific Research (S) 17H06156, JSPS Grant-in-Aid for Young Scientists (A) 17H05049, Grant-in-Aid Fellows 17J09059, and JST PRESTO Grant Number JPMJPR19T6.
Publisher Copyright:
© 2021 American Chemical Society
PY - 2021/11/4
Y1 - 2021/11/4
N2 - Microwave (MW) heating promotes various reactions catalyzed by supported metal nanoparticles (NPs); the mechanism is based on selectively heating the NPs, thereby inducing hot spots at the active reaction sites. Here, we demonstrate the effects of the sizes and loadings of platinum (Pt) NPs supported on single-crystal metal oxide (MOx) substrates (Al2O3, MgAl2O4, TiO2, SrTiO3) having different relative permittivities and conductivities. Considerable heating occurred when Pt NPs were deposited on MOxsubstrates having low relative permittivities and conductivities, indicating that the MW transparency of the substrate is the most critical parameter. Magnetic field heating was preferred when the loading amount of Pt NPs was large. Electromagnetic field simulations suggested that the electric field concentration between Pt NPs formed local hot spots. Moreover, the MW absorption behavior of the NP/MOxcomposite depended on the conductivity of the supported metal, and the frequency of the MWs. We conclude that the relative permittivity and conductivity of the MOxsupport are the most important parameters for ensuring efficacious MW heating by Pt NPs, followed by size and loading of the supported metal NPs. The synergistic effect of the metal NPs and MOxsupport results in targeted MW heating of the supported metal catalyst.
AB - Microwave (MW) heating promotes various reactions catalyzed by supported metal nanoparticles (NPs); the mechanism is based on selectively heating the NPs, thereby inducing hot spots at the active reaction sites. Here, we demonstrate the effects of the sizes and loadings of platinum (Pt) NPs supported on single-crystal metal oxide (MOx) substrates (Al2O3, MgAl2O4, TiO2, SrTiO3) having different relative permittivities and conductivities. Considerable heating occurred when Pt NPs were deposited on MOxsubstrates having low relative permittivities and conductivities, indicating that the MW transparency of the substrate is the most critical parameter. Magnetic field heating was preferred when the loading amount of Pt NPs was large. Electromagnetic field simulations suggested that the electric field concentration between Pt NPs formed local hot spots. Moreover, the MW absorption behavior of the NP/MOxcomposite depended on the conductivity of the supported metal, and the frequency of the MWs. We conclude that the relative permittivity and conductivity of the MOxsupport are the most important parameters for ensuring efficacious MW heating by Pt NPs, followed by size and loading of the supported metal NPs. The synergistic effect of the metal NPs and MOxsupport results in targeted MW heating of the supported metal catalyst.
UR - http://www.scopus.com/inward/record.url?scp=85118789738&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118789738&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.1c06650
DO - 10.1021/acs.jpcc.1c06650
M3 - Article
AN - SCOPUS:85118789738
SN - 1932-7447
VL - 125
SP - 23720
EP - 23728
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 43
ER -