Designing of self-deploying origami models using geometrically misaligned crease patterns

Kazuya Saito, Akira Tsukahara, Yoji Okabe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Traditionally, origami-based structures are designed on the premise of "rigid folding," i.e., the facets and fold lines of origami can be replaced with rigid panels and ideal hinges, respectively. Miura-ori and double corrugation surface are representative rigid-foldable origami models. However, from a structural mechanics viewpoint, these systems are usually overconstrained and have negative degrees of freedom (DOF), i.e., the number of constraints exceeds the number of variables. In these cases, the singularity in crease patterns guarantees their rigid foldability. Further, if misalignments are included in the systems' crease patterns, they become no longer rigid-foldable. This study presents a new method for designing self-deploying origami using the geometrically misaligned creases. In this method, some facets are replaced by "holes" such that the systems become a 1-DOF mechanism. These perforated origami models can be folded and unfolded similar to rigidfoldable (without misalignment) models because of their DOF. Focusing on the removed facets, the holes will deform according to the motion of the frame of the remaining parts. In the proposed method, these holes are filled with elastic parts and store elastic energy for self-deployment. First, a new extended rigid-folding simulation technique is proposed to estimate the deformation of the holes. Next by using the above technique, the proposed method is applied on arbitrary-size quadrilateral mesh origami. Finally, by using the finite-element method, the authors conduct numerical simulations and confirm the deployment capabilities of the models.

Original languageEnglish
Title of host publication38th Mechanisms and Robotics Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846377
DOIs
Publication statusPublished - 2014
Externally publishedYes
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: Aug 17 2014Aug 20 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume5B

Conference

ConferenceASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
CountryUnited States
CityBuffalo
Period8/17/148/20/14

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Designing of self-deploying origami models using geometrically misaligned crease patterns'. Together they form a unique fingerprint.

Cite this