Abstract
We have fabricated a metal-oxide-semiconductor field-effect-transistor (MOSFET)-based biosensor for the detection of zearalenone using a standard complementary metal-oxide-semiconductor (CMOS) process. Au was used as the gate metal to immobilize a self-assembled monolayer (SAM) made of mercaptohexadecanoic acid (MHDA). The SAM was used to immobilize anti-zearalenone antibody. The carboxyl group of the SAM was bound to the anti-zearalenone antibody. Anti-zearalenone antibody and zearalenone were bound by an antigen-antibody reaction. The measurements were performed in phosphate buffered saline (PBS; pH 7.4) solution. A Pt electrode was employed as a reference electrode. The gate voltage of the sensor was applied using the Pt reference electrode. The binding of the SAM, anti-zearalenone antibody, and zearalenone caused a variation in the drain current of the MOSFET-based biosensor. To verify the interaction among the SAM, anti-zearalenone antibody, and zearalenone, surface plasmon resonance (SPR) measurements were performed.
Original language | English |
---|---|
Pages (from-to) | 06FJ061-06FJ064 |
Journal | Japanese journal of applied physics |
Volume | 48 |
Issue number | 6 PART 2 |
DOIs | |
Publication status | Published - Jun 2009 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Engineering(all)
- Physics and Astronomy(all)