Abstract
Various signals in tissue microenvironments are often unevenly distributed around cells. Cellular responses to asymmetric cell-matrix adhesion in a 3D space remain generally unclear and are to be studied at the single-cell resolution. Here, the authors developed a droplet-based microfluidic approach to manufacture a pure population of single cells in a microscale layer of compartmentalized 3D hydrogel matrices with a tunable spatial presentation of ligands at the subcellular level. Cells elongate with an asymmetric presentation of the integrin adhesion ligand Arg-Gly-Asp (RGD), while cells expand isotropically with a symmetric presentation of RGD. Membrane tension is higher on the side of single cells interacting with RGD than on the side without RGD. Finite element analysis shows that a non-uniform isotropic cell volume expansion model is sufficient to recapitulate the experimental results. At a longer timescale, asymmetric ligand presentation commits mesenchymal stem cells to the osteogenic lineage. Cdc42 is an essential mediator of cell polarization and lineage specification in response to asymmetric cell-matrix adhesion. This study highlights the utility of precisely controlling 3D ligand presentation around single cells to direct cell polarity for regenerative engineering and medicine.
Original language | English |
---|---|
Journal | Advanced Science |
DOIs | |
Publication status | Accepted/In press - 2022 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Medicine (miscellaneous)
- Chemical Engineering(all)
- Materials Science(all)
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- Engineering(all)
- Physics and Astronomy(all)