Development and characterization of poly(ε-caprolactone) reinforced porous hydroxyapatite for bone tissue engineering

Yos Phanny, Mitsugu Todo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Hydroxyapatite (HA) scaffold was fabricated using template method. Secondary phase of poly(caprolactone) (PCL) was then introduced into the porous structure of the HA scaffold by the freeze drying method or the room drying process. Compression test and SEM were done to examine the mechanical properties and the microstructural morphology of the composite scaffolds. It was found that the compressive strength and modulus tend to increase with increasing PCL concentration. HA/PCL scaffolds fabricated under the room drying process exhibited higher compression strength and modulus than HA/PCL scaffolds prepared by the freeze drying method because the porous HA surfaces were completely covered by PCL in the room drying scaffolds. XRD test was also used to study the phase stability of the scaffolds. It was confirmed that there was no chemical reaction between PCL and HA. On overall, the results indicated that the introduction of secondary PCL phases into the porous HA scaffold can improve the low strength and toughness of the pure HA scaffold and the HA/PCL composite scaffolds might be a potential candidate in bone tissue engineering.

Original languageEnglish
Title of host publicationBioceramics 24
PublisherTrans Tech Publications Ltd
Pages447-452
Number of pages6
Edition1
ISBN (Print)9783037855171
DOIs
Publication statusPublished - 2013
Event24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012 - Fukuoka, Japan
Duration: Oct 21 2012Oct 24 2012

Publication series

NameKey Engineering Materials
Number1
Volume529-530
ISSN (Print)1013-9826
ISSN (Electronic)1662-9795

Other

Other24th Symposium and Annual Meeting of International Society for Ceramics in Medicine, ISCM 2012
Country/TerritoryJapan
CityFukuoka
Period10/21/1210/24/12

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Development and characterization of poly(ε-caprolactone) reinforced porous hydroxyapatite for bone tissue engineering'. Together they form a unique fingerprint.

Cite this