Development of a 6-DOF manipulator driven by flexible shaft for minimally invasive surgical application

Quanquan Liu, Yo Kobayashi, Takahiko Noguchi, Elgezua Inko, Yuta Sekiguchi, Bo Zhang, Jing Ye, Kazutaka Toyoda, Makoto Hashizume, Masakatsu G. Fujie

Research output: Contribution to journalArticlepeer-review

Abstract

This paper presents a 6-DOF manipulator which consists of four parts, 1-DOF translational joint, two 2-DOF bending joints (segment1 and segment2), and 1-DOF rotational gripper. The manipulator with "flexible shaft and Double Screw Drive (DSD) mechanism" structure can obtain omni-directional bending motion through rotation of flexible shafts. In the first prototype, the flexible shafts were connected directly with the actuators in the manipulator. Compared with the first prototype, in the second prototype, flexible shafts for power transmission are connected to the base of the manipulator. Universal joints are used for power transmission to realize distal motion. The improvement done with the design of the second prototype reduced the torque necessary to drive the flexible shafts during motion in surgical interventions. Experiment results show that the manipulator has enough range of movement for surgical intervention.

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Development of a 6-DOF manipulator driven by flexible shaft for minimally invasive surgical application'. Together they form a unique fingerprint.

Cite this