Development of a circulatory mock loop for biventricular device testing with various heart conditions

Yuichiro Kado, Takuma Miyamoto, David J. Horvath, Shengqiang Gao, Kiyotaka Fukamachi, Jamshid H. Karimov

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

This study aimed to evaluate a newly designed circulatory mock loop intended to model cardiac and circulatory hemodynamics for mechanical circulatory support device testing. The mock loop was built with dedicated ports suitable for attaching assist devices in various configurations. This biventricular mock loop uses two pneumatic pumps (Abiomed AB5000, Danvers, MA, USA) driven by a dual-output driver (Thoratec Model 2600, Pleasanton, CA, USA). The drive pressures can be individually modified to simulate a healthy heart and left and/or right heart failure conditions, and variable compliance and fluid volume allow for additional customization. The loop output for a healthy heart was tested at 4.2 L/min with left and right atrial pressures of 1 and 5 mm Hg, respectively; a mean aortic pressure of 93 mm Hg; and pulmonary artery pressure of 17 mm Hg. Under conditions of left heart failure, these values were reduced to 2.1 L/min output, left atrial pressure = 28 mm Hg, right atrial pressure = 3 mm Hg, aortic pressure = 58 mm Hg, and pulmonary artery pressure = 35 mm Hg. Right heart failure resulted in the reverse balance: left atrial pressure = 0 mm Hg, right atrial pressure = 30 mm Hg, aortic pressure = 100 mm Hg, and pulmonary artery pressure = 13 mm Hg with a flow of 3.9 L/min. For biventricular heart failure, flow was decreased to 1.6 L/min, left atrial pressure = 13 mm Hg, right atrial pressure = 13 mm Hg, aortic pressure = 52 mm Hg, and pulmonary artery pressure = 18 mm Hg. This mock loop could become a reliable bench tool to simulate a range of heart failure conditions.

Original languageEnglish
Pages (from-to)600-605
Number of pages6
JournalInternational Journal of Artificial Organs
Volume43
Issue number9
DOIs
Publication statusPublished - Sep 1 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Development of a circulatory mock loop for biventricular device testing with various heart conditions'. Together they form a unique fingerprint.

Cite this