Development of a novel gait rehabilitation system by integrating functional electrical stimulation and a split belt treadmill for hemiparetic patients after stroke

Jing Ye, Yasutaka Nakashima, Inko Elgezua, Bo Zhang, Yo Kobayashi, Masakatsu G. Fujie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Nowadays, an increasing number of people with stroke are suffering considerably from a loss of physical mobility. Various traditional interventions have been developed to restore survivors' normal motor function following a stroke, but their effects are considerably limited. Many of these techniques require physical therapist's observation, specifically designed preparatory exercises and direct control of the lower limbs' position. Therefore, we propose a novel automatic gait training system for gait rehabilitation of hemiparetic patients. It integrates a split belt treadmill with a functional electrical stimulation (FES) device, which is used to improve gait quality by delivering electrical stimuli to the muscles. The delivery of the stimulus from the FES device is triggered automatically during gait cycle. As subjects walk on the separated treadmill, the gait phases are estimated by an algorithm that observes variation in the current values of the treadmill motors. Finally, we have preliminarily tested the feasibility of the proposed method through experiments on simulated hemiparetic subjects, by comparing with experimental results using force plates.

Original languageEnglish
Title of host publication"2014 5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2014
EditorsRaffaella Carloni, Lorenzo Masia, Jose Maria Sabater-Navarro, Marko Ackermann, Sunil Agrawal, Arash Ajoudani, Panagiotis Artemiadis, Matteo Bianchi, Antonio Padilha Lanari Bo, Maura Casadio, Kevin Cleary, Ashish Deshpande, Domenico Formica, Matteo Fumagalli, Nicolas Garcia-Aracil, Sasha Blue Godfrey, Islam S.M. Khalil, Olivier Lambercy, Rui C. V. Loureiro, Leonardo Mattos, Victor Munoz, Hyung-Soon Park, Luis Eduardo Rodriguez Cheu, Roque Saltaren, Adriano A. G. Siqueira, Valentina Squeri, Arno H.A. Stienen, Nikolaos Tsagarakis, Herman Van der Kooij, Bram Vanderborght, Nicola Vitiello, Jose Zariffa, Loredana Zollo
PublisherIEEE Computer Society
Pages701-706
Number of pages6
ISBN (Electronic)9781479931262
DOIs
Publication statusPublished - Sep 30 2014
Externally publishedYes
Event5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2014 - Sao Paulo, Brazil
Duration: Aug 12 2014Aug 15 2014

Publication series

NameProceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
ISSN (Print)2155-1774

Other

Other5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2014
CountryBrazil
CitySao Paulo
Period8/12/148/15/14

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Biomedical Engineering
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Development of a novel gait rehabilitation system by integrating functional electrical stimulation and a split belt treadmill for hemiparetic patients after stroke'. Together they form a unique fingerprint.

Cite this