TY - JOUR
T1 - Development of a remote environmental monitoring and control framework for tropical horticulture and verification of its validity under unstable network connection in rural area
AU - Nugroho, Andri Prima
AU - Okayasu, Takashi
AU - Hoshi, Takehiko
AU - Inoue, Eiji
AU - Hirai, Yasumaru
AU - Mitsuoka, Muneshi
AU - Sutiarso, Lilik
N1 - Funding Information:
The authors thank the Japanese Government Scholarship from the Ministry of Education, Culture, Sports, Science, and Technology ( MEXT ) for supporting and funding master and doctoral programs in the Graduate School of Bioresource and Bioenvironmental Sciences at Kyushu University, and the Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology at the Universitas Gadjah Mada, Indonesia , for providing the opportunity for continued study. This research was supported by the 29th CASIO research grant ( 2011 ), the AgriSNS research project commissioned by the Ministry of Economy, Trade and Industry in Japan, and the Grants-in-Aid for Scientific Research (B) No. 25292157 from the MEXT. We also thank Mr. Mino Purwodiharjo and Ms. Sribudi Astuti from Rejeki Tani, Yogyakarta, Indonesia for the help on the implementation of the system.
Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - This study focuses on the development and evaluation of a remote field environmental monitoring and control framework, implementing a local-global management strategy to overcome the unstable network connection in the rural area. The framework consists of environmental monitoring and control node as the local management subsystem (LMS), and the web data providing and system management as the global management subsystem (GMS) to establish a simple and flexible remote environmental monitoring and control based on a cloud platform. The supporting features are online and offline environmental monitoring, synchronization of system configuration, actuation, and offline management. Two field tests were conducted to verify its performances and functionalities, (1) environmental monitoring on tropical horticulture cultivation in Yogyakarta, Indonesia, and (2) implementation of the monitoring and control for automatic drip irrigation control based on soil moisture content for tomato. As the result of the first test, the developed framework could help to maintain the sustainability of environmental monitoring under unstable network connection over 80% availability of the data with local offline measurement up to 24% of the total entries. From the second test result, the framework could support the real-time monitoring and control of soil moisture content as well as increase the system flexibility in the adjustment of the system configuration remotely. The control system has 0.78% error (E) and 99.2% in-range soil moisture content (L < xt < U) measurement during the 10-days observation. We concluded that the proposed framework might become a useful tool for a simple remote environmental monitoring and control under unstable network connection in the rural area. The framework has the potential to be adopted in cloud-based tropical horticulture supporting system, aimed for long-term environmental monitoring and controlling local facilities.
AB - This study focuses on the development and evaluation of a remote field environmental monitoring and control framework, implementing a local-global management strategy to overcome the unstable network connection in the rural area. The framework consists of environmental monitoring and control node as the local management subsystem (LMS), and the web data providing and system management as the global management subsystem (GMS) to establish a simple and flexible remote environmental monitoring and control based on a cloud platform. The supporting features are online and offline environmental monitoring, synchronization of system configuration, actuation, and offline management. Two field tests were conducted to verify its performances and functionalities, (1) environmental monitoring on tropical horticulture cultivation in Yogyakarta, Indonesia, and (2) implementation of the monitoring and control for automatic drip irrigation control based on soil moisture content for tomato. As the result of the first test, the developed framework could help to maintain the sustainability of environmental monitoring under unstable network connection over 80% availability of the data with local offline measurement up to 24% of the total entries. From the second test result, the framework could support the real-time monitoring and control of soil moisture content as well as increase the system flexibility in the adjustment of the system configuration remotely. The control system has 0.78% error (E) and 99.2% in-range soil moisture content (L < xt < U) measurement during the 10-days observation. We concluded that the proposed framework might become a useful tool for a simple remote environmental monitoring and control under unstable network connection in the rural area. The framework has the potential to be adopted in cloud-based tropical horticulture supporting system, aimed for long-term environmental monitoring and controlling local facilities.
UR - http://www.scopus.com/inward/record.url?scp=84973518514&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84973518514&partnerID=8YFLogxK
U2 - 10.1016/j.compag.2016.04.025
DO - 10.1016/j.compag.2016.04.025
M3 - Article
AN - SCOPUS:84973518514
SN - 0168-1699
VL - 124
SP - 325
EP - 339
JO - Computers and Electronics in Agriculture
JF - Computers and Electronics in Agriculture
ER -