TY - JOUR
T1 - Development of actuation system for artificial cilia with magnetic elastomer
AU - Tsumori, Fujio
AU - Saijou, Akinori
AU - Osada, Toshiko
AU - Miura, Hideshi
N1 - Publisher Copyright:
© 2015 The Japan Society of Applied Physics.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - In this paper, we describe the development of magnetically actuated artificial cilia. Natural cilia are a highly efficient device that produces flow under a small-Reynolds-number state. There are two important characteristics of natural cilia; one is asymmetric movement, which is composed of effective and recovery strokes, and the other is the phase difference of a stroke in each cilium in an array that will produce a metachronal wave. In this paper, we propose an actuation system for artificial cilia composed of a silicone elastomer and multiparticle chains of a magnetic material. The applied magnetic field is controlled by rotation of a permanent magnet. This rotating magnetic field induced an asymmetric movement similar to that of a natural cilium. We also changed the orientation angle of multiparticle chains to control the phase difference of a stroke in each artificial cilium. This technique would help to realize metachronal waves of artificial cilia.
AB - In this paper, we describe the development of magnetically actuated artificial cilia. Natural cilia are a highly efficient device that produces flow under a small-Reynolds-number state. There are two important characteristics of natural cilia; one is asymmetric movement, which is composed of effective and recovery strokes, and the other is the phase difference of a stroke in each cilium in an array that will produce a metachronal wave. In this paper, we propose an actuation system for artificial cilia composed of a silicone elastomer and multiparticle chains of a magnetic material. The applied magnetic field is controlled by rotation of a permanent magnet. This rotating magnetic field induced an asymmetric movement similar to that of a natural cilium. We also changed the orientation angle of multiparticle chains to control the phase difference of a stroke in each artificial cilium. This technique would help to realize metachronal waves of artificial cilia.
UR - http://www.scopus.com/inward/record.url?scp=84930738648&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930738648&partnerID=8YFLogxK
U2 - 10.7567/JJAP.54.06FP12
DO - 10.7567/JJAP.54.06FP12
M3 - Article
AN - SCOPUS:84930738648
SN - 0021-4922
VL - 54
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
IS - 6
M1 - 06FP12
ER -