Development of Compact Readout Device for Neural Observation System using Fluorescence Imaging and Fast-scan Cyclic Voltammetry

Ronnakorn Siwadamrongpong, Nicha Sato, Kenji Sugie, Yasumi Ohta, Makito Haruta, Hironari Takehara, Hiroyuki Tashiro, Kiyotaka Sasagawa, Jun Ohta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A readout device for a dual-functional neural observation system is presented. The authors separately developed the reading operation of an implantable CMOS image sensor and a setup for fast-scan cyclic voltammetry and implemented them together in a microcontroller-based device. The developed imaging readout device with a size of 3.0× 5.5{cm}^{2 can reach the highest reading rate of 160 fps with a 120× 268 pixel image sensor. The voltammetry function was verified through an experiment using commercial carbon fiber electrodes in phosphate-buffered saline. When the imaging is sequentially operated with 400 V/s-scan rate voltammetry from -0.4 to 1.3 V, the system can operate at up to 60 fps. With this system, calcium imaging and dopamine recording in a freely behaving mouse can be achieved together in a simpler manner. This study aims to be the basis for the development of an implantable multi-functional sensor.

Original languageEnglish
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4864-4867
Number of pages4
ISBN (Electronic)9781728127828
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: Jul 11 2022Jul 15 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period7/11/227/15/22

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Development of Compact Readout Device for Neural Observation System using Fluorescence Imaging and Fast-scan Cyclic Voltammetry'. Together they form a unique fingerprint.

Cite this