Development of human hepatocellular carcinoma cell-targeted protein cages

Riki Toita, Masaharu Murata, Shigekazu Tabata, Kana Abe, Sayoko Narahara, Jing Shu Piao, Jeong Hun Kang, Makoto Hashizume

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)


We described herein a human hepatocellular carcinoma (HCC) cell-targeted protein cage for which the HCC-binding peptide termed SP94 was modified at the surface of a naturally occurred heat shock protein (Hsp) cage. Six types of HCC-targeted Hsp cages were chemically synthesized using two types of heterobifunctional linker (SM(PEG)n) with different lengths and two types of SP94 peptide, which contained a unique Cys residue at the N- or C-terminus of the peptide. These Hsp cages were characterized using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF MS) analyses, sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses, and dynamic light scattering (DLS) measurement. Fluorescence microscopic observations revealed that all the engineered protein cages bind selectively to HCC cells but not to the other cell lines tested (including normal liver cell). Moreover, the number of SP94 peptides on Hsp cages, conjugation site of SP94 peptide, and linker length between a Hsp cage and a SP94 peptide had important effects upon the binding of engineered Hsp cages to HCC cells. An engineered Hsp cage conjugated to the N-terminus of SP94 peptide via a longer linker molecule and containing high SP94 peptide levels showed greater binding toward HCC cells. Surprisingly, through optimization of these three factors, up to 10-fold greater affinity toward HCC cells was achieved. These results are critically important not only for the development of HCC cell-targeting devices using SP94 peptide, but also to create other cell-targeting materials that utilize other peptide ligands.

Original languageEnglish
Pages (from-to)1494-1501
Number of pages8
JournalBioconjugate Chemistry
Issue number7
Publication statusPublished - Jul 18 2012

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry


Dive into the research topics of 'Development of human hepatocellular carcinoma cell-targeted protein cages'. Together they form a unique fingerprint.

Cite this