TY - GEN
T1 - Development of indoor hybrid active noise barrier
AU - Wang, Xun
AU - Koba, Yosuke
AU - Ishikawa, Satoshi
AU - Kijimoto, Shinya
N1 - Funding Information:
This work was supported by JSPS KAKENHI Grant Number 25289051.
PY - 2015
Y1 - 2015
N2 - This paper develops an indoor active noise barrier (ANB) by using a hybrid active noise control (HB-ANC) system. The HB-ANC system reduces the noise diffracted from the top of the ANB and the noise propagated to the head position of the target person behind the ANB simultaneously to achieve higher noise attenuation. However, the waterbed effect of the feedback control part of the HB-ANC system will cause noise enhancement at some frequencies in the control area. In the paper, in order to solve this problem, a filter able to cancel the noise enhancement is integrated into the HB-ANC system. Then, the noise attenuation performance of the ANB under four sound field configurations is verified by simulations. The sound field configurations are set up to investigate how the diffraction from side of the ANB and the reflection influence the performance of the ANB. An experiment in the anechoic chamber is also conducted. The simulation and experiment results indicate that the low frequency noise can be reduced in a wide area behind the ANB, and at the head position of the person, the noise attenuation can be obtained within a wider frequency range, even for the sound fields where the diffraction from side and the reflection exist.
AB - This paper develops an indoor active noise barrier (ANB) by using a hybrid active noise control (HB-ANC) system. The HB-ANC system reduces the noise diffracted from the top of the ANB and the noise propagated to the head position of the target person behind the ANB simultaneously to achieve higher noise attenuation. However, the waterbed effect of the feedback control part of the HB-ANC system will cause noise enhancement at some frequencies in the control area. In the paper, in order to solve this problem, a filter able to cancel the noise enhancement is integrated into the HB-ANC system. Then, the noise attenuation performance of the ANB under four sound field configurations is verified by simulations. The sound field configurations are set up to investigate how the diffraction from side of the ANB and the reflection influence the performance of the ANB. An experiment in the anechoic chamber is also conducted. The simulation and experiment results indicate that the low frequency noise can be reduced in a wide area behind the ANB, and at the head position of the person, the noise attenuation can be obtained within a wider frequency range, even for the sound fields where the diffraction from side and the reflection exist.
UR - http://www.scopus.com/inward/record.url?scp=84971249875&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84971249875&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84971249875
T3 - 22nd International Congress on Sound and Vibration, ICSV 2015
BT - 22nd International Congress on Sound and Vibration, ICSV 2015
PB - International Institute of Acoustics and Vibrations
T2 - 22nd International Congress on Sound and Vibration, ICSV 2015
Y2 - 12 July 2015 through 16 July 2015
ER -