Development of metal-organic framework (MOF)-B12 system as new bio-inspired heterogeneous catalyst

Research output: Contribution to journalArticle

19 Citations (Scopus)


Abstract A novel bimetal complex {Zn4Ru2(bpdc)4·4C2NH8·9DMF}n (1) (H2bpdc = 4,4′-biphenyldicarboxylic acid) was synthesized by the solvothermal method. The results of the X-ray crystallographic analysis revealed that 1 crystallizes in the orthorhombic Pna21 space group, which has a 3D 2-fold interpenetrated hex framework, with open channel sizes along the [010] direction of ca. 1.4 nm × 1.4 nm. The photosensitizer [Ru(bpy)3]2+ was adsorbed into the 1 to form Ru@MOF by cation exchanging. A cobalamin derivative (B12), heptamethyl cobyrinate, was also effectively immobilized on Ru@MOF, and the resulting hybrid complex, B12-Ru@MOF, exhibited a high reactivity for the dechlorination reaction of 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) under an N2 atmosphere by visible light irradiation in the solid state. The catalysis of B12-Ru@MOF can still reach more than a ca. 80% conversion after third recyclings. Furthermore, the heterogeneous catalyst, B12-Ru@MOF, was useful for the cobalamin-dependent reaction, such as the 1,2-migration of the acetyl group.

Original languageEnglish
Article number18809
Pages (from-to)89-95
Number of pages7
JournalJournal of Organometallic Chemistry
Publication statusPublished - Apr 15 2015

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Development of metal-organic framework (MOF)-B<sub>12</sub> system as new bio-inspired heterogeneous catalyst'. Together they form a unique fingerprint.

  • Cite this