Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property

Takahiro Fukumaru, Tsuyohiko Fujigaya, Naotoshi Nakashima

Research output: Contribution to journalArticle

73 Citations (Scopus)

Abstract

Direct conversion from heat to electricity is one of the important technologies for a sustainable society since large quantities of energy are wasted as heat. We report the development of a single-walled carbon nanotube (SWNT)-based high conversion efficiency, air-stable and flexible thermoelectric material. We prepared cobaltocene-encapsulated SWNTs (denoted CoCp 2 @SWNTs) and revealed that the material showed a negative-type (n-type) semiconducting behaviour (Seebeck coefficient:-41.8 μV K-1 at 320 K). The CoCp 2 @SWNT film was found to show a high electrical conductivity (43,200 S m-1 at 320 K) and large power factor (75.4 μW m-1 K-2) and the performance was remarkably stable under atmospheric conditions over a wide range of temperatures. The thermoelectric figure of merit (ZT) value of the CoCp 2 @SWNT film (0.157 at 320 K) was highest among the reported n-type organic thermoelectric materials due to the large power factor and low thermal conductivity (0.15 W m-1 K-1). These characteristics of the n-type CoCp2@SWNTs allowed us to fabricate a p-n type thermoelectric device by combination with an empty SWNT-based p-type film. The fabricated device exhibited a highly efficient power generation close to the calculated values even without any air-protective coating due to the high stability of the SWNT-based materials under atmospheric conditions.

Original languageEnglish
Article number7951
JournalScientific reports
Volume5
DOIs
Publication statusPublished - Jan 22 2015

Fingerprint

carbon nanotubes
thermoelectric materials
meteorology
heat
protective coatings
air
Seebeck effect
electricity
figure of merit
thermal conductivity
electrical resistivity
temperature
energy

All Science Journal Classification (ASJC) codes

  • General

Cite this

Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. / Fukumaru, Takahiro; Fujigaya, Tsuyohiko; Nakashima, Naotoshi.

In: Scientific reports, Vol. 5, 7951, 22.01.2015.

Research output: Contribution to journalArticle

@article{71c964dd56de4fe29aba2f624ff7765b,
title = "Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property",
abstract = "Direct conversion from heat to electricity is one of the important technologies for a sustainable society since large quantities of energy are wasted as heat. We report the development of a single-walled carbon nanotube (SWNT)-based high conversion efficiency, air-stable and flexible thermoelectric material. We prepared cobaltocene-encapsulated SWNTs (denoted CoCp 2 @SWNTs) and revealed that the material showed a negative-type (n-type) semiconducting behaviour (Seebeck coefficient:-41.8 μV K-1 at 320 K). The CoCp 2 @SWNT film was found to show a high electrical conductivity (43,200 S m-1 at 320 K) and large power factor (75.4 μW m-1 K-2) and the performance was remarkably stable under atmospheric conditions over a wide range of temperatures. The thermoelectric figure of merit (ZT) value of the CoCp 2 @SWNT film (0.157 at 320 K) was highest among the reported n-type organic thermoelectric materials due to the large power factor and low thermal conductivity (0.15 W m-1 K-1). These characteristics of the n-type CoCp2@SWNTs allowed us to fabricate a p-n type thermoelectric device by combination with an empty SWNT-based p-type film. The fabricated device exhibited a highly efficient power generation close to the calculated values even without any air-protective coating due to the high stability of the SWNT-based materials under atmospheric conditions.",
author = "Takahiro Fukumaru and Tsuyohiko Fujigaya and Naotoshi Nakashima",
year = "2015",
month = "1",
day = "22",
doi = "10.1038/srep07951",
language = "English",
volume = "5",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",

}

TY - JOUR

T1 - Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property

AU - Fukumaru, Takahiro

AU - Fujigaya, Tsuyohiko

AU - Nakashima, Naotoshi

PY - 2015/1/22

Y1 - 2015/1/22

N2 - Direct conversion from heat to electricity is one of the important technologies for a sustainable society since large quantities of energy are wasted as heat. We report the development of a single-walled carbon nanotube (SWNT)-based high conversion efficiency, air-stable and flexible thermoelectric material. We prepared cobaltocene-encapsulated SWNTs (denoted CoCp 2 @SWNTs) and revealed that the material showed a negative-type (n-type) semiconducting behaviour (Seebeck coefficient:-41.8 μV K-1 at 320 K). The CoCp 2 @SWNT film was found to show a high electrical conductivity (43,200 S m-1 at 320 K) and large power factor (75.4 μW m-1 K-2) and the performance was remarkably stable under atmospheric conditions over a wide range of temperatures. The thermoelectric figure of merit (ZT) value of the CoCp 2 @SWNT film (0.157 at 320 K) was highest among the reported n-type organic thermoelectric materials due to the large power factor and low thermal conductivity (0.15 W m-1 K-1). These characteristics of the n-type CoCp2@SWNTs allowed us to fabricate a p-n type thermoelectric device by combination with an empty SWNT-based p-type film. The fabricated device exhibited a highly efficient power generation close to the calculated values even without any air-protective coating due to the high stability of the SWNT-based materials under atmospheric conditions.

AB - Direct conversion from heat to electricity is one of the important technologies for a sustainable society since large quantities of energy are wasted as heat. We report the development of a single-walled carbon nanotube (SWNT)-based high conversion efficiency, air-stable and flexible thermoelectric material. We prepared cobaltocene-encapsulated SWNTs (denoted CoCp 2 @SWNTs) and revealed that the material showed a negative-type (n-type) semiconducting behaviour (Seebeck coefficient:-41.8 μV K-1 at 320 K). The CoCp 2 @SWNT film was found to show a high electrical conductivity (43,200 S m-1 at 320 K) and large power factor (75.4 μW m-1 K-2) and the performance was remarkably stable under atmospheric conditions over a wide range of temperatures. The thermoelectric figure of merit (ZT) value of the CoCp 2 @SWNT film (0.157 at 320 K) was highest among the reported n-type organic thermoelectric materials due to the large power factor and low thermal conductivity (0.15 W m-1 K-1). These characteristics of the n-type CoCp2@SWNTs allowed us to fabricate a p-n type thermoelectric device by combination with an empty SWNT-based p-type film. The fabricated device exhibited a highly efficient power generation close to the calculated values even without any air-protective coating due to the high stability of the SWNT-based materials under atmospheric conditions.

UR - http://www.scopus.com/inward/record.url?scp=84938314920&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84938314920&partnerID=8YFLogxK

U2 - 10.1038/srep07951

DO - 10.1038/srep07951

M3 - Article

VL - 5

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

M1 - 7951

ER -