Development of pressure sensitive molecular film suitable for measurement in high knudsen number flows

Hideo Mori, Yu Matsuda, Hiroki Yamaguchi, Yoshiki Sakazaki, Toru Uchida, Tomohide Niimi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Pressure sensitive paint (PSP) technique is based on the interaction of oxygen molecules with luminescent molecules, and it seems suitable for analyses of high Knudsen number flows which require diagnostic tools in the molecular level. However, application of the PSP technique to micro-devices is still very difficult because of the thickness of PSP layers of the order of microns and the aggregation of luminescent molecules caused by the "painting" methods. To resolve the problems of ordinary PSPs mentioned above, we adopt the Langmuir-Blodgett (LB) method to fabricate pressure sensitive molecular films (PSMFs) having nanometer order thickness. The fundamental properties of the PSMFs such as the pressure sensitivity and the surface roughness are examined, to evaluate the feasibility of the PSMF technique for pressure measurement around micro-devices. A PSMF based on palladium (II) mesoporphyrin IX shows high pressure sensitivity in low pressure regime, while a PSMF based on platinum (II) mesoporphyrin IX is optimum for atmospheric pressure. It is also clarified that the PSMFs do not degrade the roughness of solid surfaces. The results indicate the feasibility of the PSMF technique for pressure measurement in high Knudsen number flows such as micro flows.

Original languageEnglish
Title of host publication2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT 2007
Pages53-58
Number of pages6
DOIs
Publication statusPublished - Dec 1 2007
Externally publishedYes
Event2007 ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007 - Vancouver, BC, Canada
Duration: Jul 8 2007Jul 12 2007

Publication series

Name2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT 2007
Volume1

Other

Other2007 ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007
Country/TerritoryCanada
CityVancouver, BC
Period7/8/077/12/07

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Development of pressure sensitive molecular film suitable for measurement in high knudsen number flows'. Together they form a unique fingerprint.

Cite this