TY - GEN
T1 - Development of pressure sensitive molecular film suitable for measurement in high knudsen number flows
AU - Mori, Hideo
AU - Matsuda, Yu
AU - Yamaguchi, Hiroki
AU - Sakazaki, Yoshiki
AU - Uchida, Toru
AU - Niimi, Tomohide
PY - 2007/12/1
Y1 - 2007/12/1
N2 - Pressure sensitive paint (PSP) technique is based on the interaction of oxygen molecules with luminescent molecules, and it seems suitable for analyses of high Knudsen number flows which require diagnostic tools in the molecular level. However, application of the PSP technique to micro-devices is still very difficult because of the thickness of PSP layers of the order of microns and the aggregation of luminescent molecules caused by the "painting" methods. To resolve the problems of ordinary PSPs mentioned above, we adopt the Langmuir-Blodgett (LB) method to fabricate pressure sensitive molecular films (PSMFs) having nanometer order thickness. The fundamental properties of the PSMFs such as the pressure sensitivity and the surface roughness are examined, to evaluate the feasibility of the PSMF technique for pressure measurement around micro-devices. A PSMF based on palladium (II) mesoporphyrin IX shows high pressure sensitivity in low pressure regime, while a PSMF based on platinum (II) mesoporphyrin IX is optimum for atmospheric pressure. It is also clarified that the PSMFs do not degrade the roughness of solid surfaces. The results indicate the feasibility of the PSMF technique for pressure measurement in high Knudsen number flows such as micro flows.
AB - Pressure sensitive paint (PSP) technique is based on the interaction of oxygen molecules with luminescent molecules, and it seems suitable for analyses of high Knudsen number flows which require diagnostic tools in the molecular level. However, application of the PSP technique to micro-devices is still very difficult because of the thickness of PSP layers of the order of microns and the aggregation of luminescent molecules caused by the "painting" methods. To resolve the problems of ordinary PSPs mentioned above, we adopt the Langmuir-Blodgett (LB) method to fabricate pressure sensitive molecular films (PSMFs) having nanometer order thickness. The fundamental properties of the PSMFs such as the pressure sensitivity and the surface roughness are examined, to evaluate the feasibility of the PSMF technique for pressure measurement around micro-devices. A PSMF based on palladium (II) mesoporphyrin IX shows high pressure sensitivity in low pressure regime, while a PSMF based on platinum (II) mesoporphyrin IX is optimum for atmospheric pressure. It is also clarified that the PSMFs do not degrade the roughness of solid surfaces. The results indicate the feasibility of the PSMF technique for pressure measurement in high Knudsen number flows such as micro flows.
UR - http://www.scopus.com/inward/record.url?scp=43749110521&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43749110521&partnerID=8YFLogxK
U2 - 10.1115/HT2007-32632
DO - 10.1115/HT2007-32632
M3 - Conference contribution
AN - SCOPUS:43749110521
SN - 0791842746
SN - 9780791842744
T3 - 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT 2007
SP - 53
EP - 58
BT - 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT 2007
T2 - 2007 ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007
Y2 - 8 July 2007 through 12 July 2007
ER -