Development of two-dimensional qualitative visualization method for isoflavones secreted from soybean roots using sheets with immobilized bovine serum albumin

Takeshi Onodera, Haruna Miyazaki, Xinzhu Li, Jin Wang, Masaru Nakayasu, Rui Yatabe, Yusuke Tahara, Ai Hosoki, Nozomu Sakurai, Akifumi Sugiyama

Research output: Contribution to journalArticlepeer-review

Abstract

A visualization method for the qualitative evaluation of soybean isoflavones secreted from soybean roots by transferring them onto a sheet with immobilized bovine serum albumin (BSA) was developed. BSA was chemically bonded onto a glass microfiber filter. The fluorescence quenching resulting from the interaction of BSA with soybean isoflavones such as daidzein and daidzin was utilized. Fluorescence images before and after soybean roots were placed in contact with the sheets with immobilized BSA were taken with an electron-multiplying charge-coupled device camera. The fluorescence quenching in the images was visualized and analyzed. Soybean isoflavones were extracted from the sheets for quantitative analysis, and the correlation coefficient between the quenched fluorescence intensity per sheet and the total amount of soybean isoflavones was 0.78 (p < 0.01), indicating a high correlation. The quenched fluorescence intensity was lower in pumpkin roots, which do not secrete soybean isoflavone. It was found from analyzed images that soybean isoflavone is secreted in larger amounts from the basal region of the taproot and the tips of the lateral roots of soybean.

Original languageEnglish
Article number113705
JournalBiosensors and Bioelectronics
Volume196
DOIs
Publication statusPublished - Jan 15 2022

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biophysics
  • Biomedical Engineering
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Development of two-dimensional qualitative visualization method for isoflavones secreted from soybean roots using sheets with immobilized bovine serum albumin'. Together they form a unique fingerprint.

Cite this