Developmental schedules and persistence of experimental host-parasitoid systems at two different temperatures

Midori Tuda, Masakazu Shimada

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

In experimental systems of a bruchid host, Callosobruchus chinensis, and a braconid parasitoid, Heterospilus prosopidis, the effects of changes in developmental schedules were examined in relation to the persistence of the system, or the time to extinction of a component species. We modified the developmental schedules by changing the temperature from 30°C to 32°C. To compare persistence, a long-term system with overlapping generations was set up and the bruchid host resource, azuki beans (Vigna angularis), were renewed every 10 days. The long-term systems showed greater persistence at 30°C than at 32°C. Parasitoid extinction was often observed. We examined differences in life-history characteristics of the component species between the two temperatures by short-term, single-generation experiments. Fecundity and egg hatchability of the host were reduced and the developmental period of the parasitoid was shortened at 32°C. The age at which the host became vulnerable to parasitoid attacks was earlier at 32°C than at 30°C. We constructed a daily based, age-structured model to analyse which life-history change(s) affected the persistence of the long-term systems. The density-dependent population growth of the host was described by a logistic equation and the attack rate of the parasitoid by a type II functional response with mutual interference. The simulation results showed greater persistence at 30°C than at 32°C. Sensitivity analysis showed that there are threshold boundaries in the length of the vulnerable period of the host beyond which system persistence drastically changes. Further, persistence at another temperature, 28°C, was predicted using a model based on short-term data on the host.

Original languageEnglish
Pages (from-to)283-291
Number of pages9
JournalOecologia
Volume103
Issue number3
DOIs
Publication statusPublished - Aug 1 1995
Externally publishedYes

Fingerprint

parasitoid
persistence
temperature
Vigna angularis
Heterospilus
life history
extinction
Callosobruchus chinensis
egg hatchability
functional response
sensitivity analysis
fecundity
population growth
logistics
egg
resource
simulation
experiment

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics

Cite this

Developmental schedules and persistence of experimental host-parasitoid systems at two different temperatures. / Tuda, Midori; Shimada, Masakazu.

In: Oecologia, Vol. 103, No. 3, 01.08.1995, p. 283-291.

Research output: Contribution to journalArticle

@article{e1d81455b7b84ffeabc72771f0fc6dfd,
title = "Developmental schedules and persistence of experimental host-parasitoid systems at two different temperatures",
abstract = "In experimental systems of a bruchid host, Callosobruchus chinensis, and a braconid parasitoid, Heterospilus prosopidis, the effects of changes in developmental schedules were examined in relation to the persistence of the system, or the time to extinction of a component species. We modified the developmental schedules by changing the temperature from 30°C to 32°C. To compare persistence, a long-term system with overlapping generations was set up and the bruchid host resource, azuki beans (Vigna angularis), were renewed every 10 days. The long-term systems showed greater persistence at 30°C than at 32°C. Parasitoid extinction was often observed. We examined differences in life-history characteristics of the component species between the two temperatures by short-term, single-generation experiments. Fecundity and egg hatchability of the host were reduced and the developmental period of the parasitoid was shortened at 32°C. The age at which the host became vulnerable to parasitoid attacks was earlier at 32°C than at 30°C. We constructed a daily based, age-structured model to analyse which life-history change(s) affected the persistence of the long-term systems. The density-dependent population growth of the host was described by a logistic equation and the attack rate of the parasitoid by a type II functional response with mutual interference. The simulation results showed greater persistence at 30°C than at 32°C. Sensitivity analysis showed that there are threshold boundaries in the length of the vulnerable period of the host beyond which system persistence drastically changes. Further, persistence at another temperature, 28°C, was predicted using a model based on short-term data on the host.",
author = "Midori Tuda and Masakazu Shimada",
year = "1995",
month = "8",
day = "1",
doi = "10.1007/BF00328616",
language = "English",
volume = "103",
pages = "283--291",
journal = "Oecologia",
issn = "0029-8519",
publisher = "Springer Verlag",
number = "3",

}

TY - JOUR

T1 - Developmental schedules and persistence of experimental host-parasitoid systems at two different temperatures

AU - Tuda, Midori

AU - Shimada, Masakazu

PY - 1995/8/1

Y1 - 1995/8/1

N2 - In experimental systems of a bruchid host, Callosobruchus chinensis, and a braconid parasitoid, Heterospilus prosopidis, the effects of changes in developmental schedules were examined in relation to the persistence of the system, or the time to extinction of a component species. We modified the developmental schedules by changing the temperature from 30°C to 32°C. To compare persistence, a long-term system with overlapping generations was set up and the bruchid host resource, azuki beans (Vigna angularis), were renewed every 10 days. The long-term systems showed greater persistence at 30°C than at 32°C. Parasitoid extinction was often observed. We examined differences in life-history characteristics of the component species between the two temperatures by short-term, single-generation experiments. Fecundity and egg hatchability of the host were reduced and the developmental period of the parasitoid was shortened at 32°C. The age at which the host became vulnerable to parasitoid attacks was earlier at 32°C than at 30°C. We constructed a daily based, age-structured model to analyse which life-history change(s) affected the persistence of the long-term systems. The density-dependent population growth of the host was described by a logistic equation and the attack rate of the parasitoid by a type II functional response with mutual interference. The simulation results showed greater persistence at 30°C than at 32°C. Sensitivity analysis showed that there are threshold boundaries in the length of the vulnerable period of the host beyond which system persistence drastically changes. Further, persistence at another temperature, 28°C, was predicted using a model based on short-term data on the host.

AB - In experimental systems of a bruchid host, Callosobruchus chinensis, and a braconid parasitoid, Heterospilus prosopidis, the effects of changes in developmental schedules were examined in relation to the persistence of the system, or the time to extinction of a component species. We modified the developmental schedules by changing the temperature from 30°C to 32°C. To compare persistence, a long-term system with overlapping generations was set up and the bruchid host resource, azuki beans (Vigna angularis), were renewed every 10 days. The long-term systems showed greater persistence at 30°C than at 32°C. Parasitoid extinction was often observed. We examined differences in life-history characteristics of the component species between the two temperatures by short-term, single-generation experiments. Fecundity and egg hatchability of the host were reduced and the developmental period of the parasitoid was shortened at 32°C. The age at which the host became vulnerable to parasitoid attacks was earlier at 32°C than at 30°C. We constructed a daily based, age-structured model to analyse which life-history change(s) affected the persistence of the long-term systems. The density-dependent population growth of the host was described by a logistic equation and the attack rate of the parasitoid by a type II functional response with mutual interference. The simulation results showed greater persistence at 30°C than at 32°C. Sensitivity analysis showed that there are threshold boundaries in the length of the vulnerable period of the host beyond which system persistence drastically changes. Further, persistence at another temperature, 28°C, was predicted using a model based on short-term data on the host.

UR - http://www.scopus.com/inward/record.url?scp=0028888206&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028888206&partnerID=8YFLogxK

U2 - 10.1007/BF00328616

DO - 10.1007/BF00328616

M3 - Article

VL - 103

SP - 283

EP - 291

JO - Oecologia

JF - Oecologia

SN - 0029-8519

IS - 3

ER -