DFT exploration of active site motifs in methane hydroxylation by Ni-ZSM-5 zeolite

Muhammad Haris Mahyuddin, Kazunari Yoshizawa

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

The O2-activated Ni-ZSM-5 zeolite is a promising catalyst for the selective oxidation (hydroxylation) of methane to methanol. While UV-vis spectra analyses (Shan et al. Langmuir 2014, 30, 8558-8569) have proposed bent mono(μ-oxo)dinickel [Ni2(μ-O)]2+ as the active site in Ni-ZSM-5, calculations based on density functional theory (DFT) have shown that methane activation on such an active site motif leads to a very high activation barrier, which makes it impossible for the reaction to proceed at low temperatures (<200 °C). Thus, explorations of other possible motifs of the Ni active site in ZSM-5 zeolite are indispensable. In the present study, we employed the DFT+U method to calculate methane hydroxylation on various motifs of Ni-oxo active species, including [NiO]2+, [Ni2(μ-O)]2+, [Ni2(μ-O)2]2+, and [Ni3(μ-O)3]2+, in the periodic structure of ZSM-5 zeolite. On the basis of agreement between the previously reported experimental and presently calculated activation energies, we suggest the [Ni2(μ-O)2]2+ and [Ni3(μ-O)3]2+ motifs as two possible candidates for the actual structure of active sites in Ni-ZSM-5. Different from [Cu2(μ-O)]2+-exchanged zeolites extensively studied in recent years, [Ni2(μ-O)2]2+- and [Ni3(μ-O)3]2+-ZSM-5 are predicted to activate methane and desorb the formed methanol with low activation and desorption energies, providing a new direction for low-temperature methane hydroxylation with spontaneous methanol desorption.

Original languageEnglish
Pages (from-to)5875-5885
Number of pages11
JournalCatalysis Science and Technology
Volume8
Issue number22
DOIs
Publication statusPublished - Jan 1 2018

Fingerprint

Hydroxylation
Methane
Density functional theory
Methanol
Chemical activation
Desorption
Zeolites
Periodic structures
Activation energy
ZSM-5 zeolite
Oxidation
Temperature
Catalysts

All Science Journal Classification (ASJC) codes

  • Catalysis

Cite this

DFT exploration of active site motifs in methane hydroxylation by Ni-ZSM-5 zeolite. / Mahyuddin, Muhammad Haris; Yoshizawa, Kazunari.

In: Catalysis Science and Technology, Vol. 8, No. 22, 01.01.2018, p. 5875-5885.

Research output: Contribution to journalArticle

@article{38d88ced3ef5498ab1858b7d642daa08,
title = "DFT exploration of active site motifs in methane hydroxylation by Ni-ZSM-5 zeolite",
abstract = "The O2-activated Ni-ZSM-5 zeolite is a promising catalyst for the selective oxidation (hydroxylation) of methane to methanol. While UV-vis spectra analyses (Shan et al. Langmuir 2014, 30, 8558-8569) have proposed bent mono(μ-oxo)dinickel [Ni2(μ-O)]2+ as the active site in Ni-ZSM-5, calculations based on density functional theory (DFT) have shown that methane activation on such an active site motif leads to a very high activation barrier, which makes it impossible for the reaction to proceed at low temperatures (<200 °C). Thus, explorations of other possible motifs of the Ni active site in ZSM-5 zeolite are indispensable. In the present study, we employed the DFT+U method to calculate methane hydroxylation on various motifs of Ni-oxo active species, including [NiO]2+, [Ni2(μ-O)]2+, [Ni2(μ-O)2]2+, and [Ni3(μ-O)3]2+, in the periodic structure of ZSM-5 zeolite. On the basis of agreement between the previously reported experimental and presently calculated activation energies, we suggest the [Ni2(μ-O)2]2+ and [Ni3(μ-O)3]2+ motifs as two possible candidates for the actual structure of active sites in Ni-ZSM-5. Different from [Cu2(μ-O)]2+-exchanged zeolites extensively studied in recent years, [Ni2(μ-O)2]2+- and [Ni3(μ-O)3]2+-ZSM-5 are predicted to activate methane and desorb the formed methanol with low activation and desorption energies, providing a new direction for low-temperature methane hydroxylation with spontaneous methanol desorption.",
author = "Mahyuddin, {Muhammad Haris} and Kazunari Yoshizawa",
year = "2018",
month = "1",
day = "1",
doi = "10.1039/c8cy01441h",
language = "English",
volume = "8",
pages = "5875--5885",
journal = "Catalysis Science and Technology",
issn = "2044-4753",
publisher = "Royal Society of Chemistry",
number = "22",

}

TY - JOUR

T1 - DFT exploration of active site motifs in methane hydroxylation by Ni-ZSM-5 zeolite

AU - Mahyuddin, Muhammad Haris

AU - Yoshizawa, Kazunari

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The O2-activated Ni-ZSM-5 zeolite is a promising catalyst for the selective oxidation (hydroxylation) of methane to methanol. While UV-vis spectra analyses (Shan et al. Langmuir 2014, 30, 8558-8569) have proposed bent mono(μ-oxo)dinickel [Ni2(μ-O)]2+ as the active site in Ni-ZSM-5, calculations based on density functional theory (DFT) have shown that methane activation on such an active site motif leads to a very high activation barrier, which makes it impossible for the reaction to proceed at low temperatures (<200 °C). Thus, explorations of other possible motifs of the Ni active site in ZSM-5 zeolite are indispensable. In the present study, we employed the DFT+U method to calculate methane hydroxylation on various motifs of Ni-oxo active species, including [NiO]2+, [Ni2(μ-O)]2+, [Ni2(μ-O)2]2+, and [Ni3(μ-O)3]2+, in the periodic structure of ZSM-5 zeolite. On the basis of agreement between the previously reported experimental and presently calculated activation energies, we suggest the [Ni2(μ-O)2]2+ and [Ni3(μ-O)3]2+ motifs as two possible candidates for the actual structure of active sites in Ni-ZSM-5. Different from [Cu2(μ-O)]2+-exchanged zeolites extensively studied in recent years, [Ni2(μ-O)2]2+- and [Ni3(μ-O)3]2+-ZSM-5 are predicted to activate methane and desorb the formed methanol with low activation and desorption energies, providing a new direction for low-temperature methane hydroxylation with spontaneous methanol desorption.

AB - The O2-activated Ni-ZSM-5 zeolite is a promising catalyst for the selective oxidation (hydroxylation) of methane to methanol. While UV-vis spectra analyses (Shan et al. Langmuir 2014, 30, 8558-8569) have proposed bent mono(μ-oxo)dinickel [Ni2(μ-O)]2+ as the active site in Ni-ZSM-5, calculations based on density functional theory (DFT) have shown that methane activation on such an active site motif leads to a very high activation barrier, which makes it impossible for the reaction to proceed at low temperatures (<200 °C). Thus, explorations of other possible motifs of the Ni active site in ZSM-5 zeolite are indispensable. In the present study, we employed the DFT+U method to calculate methane hydroxylation on various motifs of Ni-oxo active species, including [NiO]2+, [Ni2(μ-O)]2+, [Ni2(μ-O)2]2+, and [Ni3(μ-O)3]2+, in the periodic structure of ZSM-5 zeolite. On the basis of agreement between the previously reported experimental and presently calculated activation energies, we suggest the [Ni2(μ-O)2]2+ and [Ni3(μ-O)3]2+ motifs as two possible candidates for the actual structure of active sites in Ni-ZSM-5. Different from [Cu2(μ-O)]2+-exchanged zeolites extensively studied in recent years, [Ni2(μ-O)2]2+- and [Ni3(μ-O)3]2+-ZSM-5 are predicted to activate methane and desorb the formed methanol with low activation and desorption energies, providing a new direction for low-temperature methane hydroxylation with spontaneous methanol desorption.

UR - http://www.scopus.com/inward/record.url?scp=85056785571&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056785571&partnerID=8YFLogxK

U2 - 10.1039/c8cy01441h

DO - 10.1039/c8cy01441h

M3 - Article

AN - SCOPUS:85056785571

VL - 8

SP - 5875

EP - 5885

JO - Catalysis Science and Technology

JF - Catalysis Science and Technology

SN - 2044-4753

IS - 22

ER -