Dielectric property controls using crystal structure anisotropy in bismuth layer-structured dielectrics

Muneyasu Suzuki, Kenji Takahashi, Takayuki Watanabe, Tadashi Takenaka, Hiroshi Funakubo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Temperature dependency of the dielectric property of c-axis-orientcd SrBi4Ti4O15 films was investigated in a temperature range from 80 to 400 K. c-axis-oriented epitaxial films with the film thickness of 30 and 140 nm were grown on (100)cSrRuO 3//(100)SrTiO3 substrates by metal organic chemical vapor deposition (MOCVD). Increasing lattice distortions along the aand c-axes with decreasing film thickness was ascertained by XRD reciprocal space mapping. However, capacitance change normalized by the capacitance data at 300 K for with temperature was independent of the film thickness; it increased from 80 to 230 K and contrary decreased with increasing the temperature. Especially, the temperature coefficient of capacitance from 230 to 330 K was almost the same. It indicates that dielectric characteristics of these films for the temperature are independent of the film thickness in the actual use. Moreover, the same mesurement for the 120 nm-thick fiber-textured c-axis-oriented SrBi 4Ti4O15 film deposited on the (100) cLaNiO3/(111)Pt/TiO2/SiO2/(100)Si substrate was also investigated. Resultant capacitance change with the temperature was basically the same with that of the epitaxial one, even though the temperature at maximum capacitance value was slightly shifted to lower temperature of 200 K. These data suggest that of capacitance change with the temperature was almost independent of the film thickness and the in-plane orientation.

Original languageEnglish
Title of host publicationFerroelectric Thin Films XIII
PublisherMaterials Research Society
Pages21-26
Number of pages6
ISBN (Print)155899856X, 9781558998568
DOIs
Publication statusPublished - 2005
Externally publishedYes
Event2005 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 28 2005Dec 2 2005

Publication series

NameMaterials Research Society Symposium Proceedings
Volume902
ISSN (Print)0272-9172

Other

Other2005 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA
Period11/28/0512/2/05

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Dielectric property controls using crystal structure anisotropy in bismuth layer-structured dielectrics'. Together they form a unique fingerprint.

Cite this