Differential role of SNAP-25 phosphorylation by protein kinases A and C in the regulation of SNARE complex formation and exocytosis in PC12 cells

Jing Gao, Makiko Hirata, Akiko Mizokami, Jin Zhao, Ichiro Takahashi, Hiroshi Takeuchi, Masato Hirata

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

The final step of regulated exocytosis, membrane fusion, is mediated by formation of the SNARE complex by syntaxin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and VAMP (vesicle-associated membrane protein). Phosphorylation of SNARE and accessory proteins contributes to regulation of exocytosis. We previously identified residues of SNAP-25 phosphorylated by protein kinase A (PKA) and PKC. However, the physiological role of SNAP-25 phosphorylation in exocytosis, in particular with regard to SNARE complex formation, has remained elusive. SNARE complex formation by purified recombinant SNAP-25, syntaxin-1, and VAMP-in vitro was inhibited or promoted as a result of the phosphorylation at Thr138 by PKA or at Ser187 by PKC, respectively. SNARE complex formation in intact PC12 cells was similarly inhibited by forskolin (activator of PKA) and promoted by phorbol 12-myristate 13-acetate (PMA, activator of PKC). Noradrenaline secretion from PC12 cells induced by a high K+ concentration was enhanced by forskolin or PMA. Stable depletion of SNAP-25 inhibited high-K+-induced noradrenaline secretion. Forced expression of WT SNAP-25 restored the secretory response of the SNAP-25-depleted cells to high-K+, and this response was enhanced by forskolin or PMA. Expression of the nonphosphorylatable T138A or S187A mutants of SNAP-25 similarly rescued the secretory response to high-K+, but the augmentation of this response by forskolin was more pronounced in the cells expressing SNAP-25 (T138A) than in those expressing SNAP-25 (WT), whereas that by PMA was less pronounced in those expressing SNAP-25 (S187A). Our results thus suggest that SNAP-25 phosphorylation by PKA or PKC contributes differentially to the control of exocytosis in PC12 cells by regulating SNARE complex formation.

Original languageEnglish
Pages (from-to)425-437
Number of pages13
JournalCellular Signalling
Volume28
Issue number5
DOIs
Publication statusPublished - May 1 2016

Fingerprint

Synaptosomal-Associated Protein 25
SNARE Proteins
PC12 Cells
Exocytosis
Cyclic AMP-Dependent Protein Kinases
Protein Kinase C
Phosphorylation
Colforsin
R-SNARE Proteins
Norepinephrine
Syntaxin 1
Qa-SNARE Proteins
Membrane Fusion

All Science Journal Classification (ASJC) codes

  • Cell Biology

Cite this

Differential role of SNAP-25 phosphorylation by protein kinases A and C in the regulation of SNARE complex formation and exocytosis in PC12 cells. / Gao, Jing; Hirata, Makiko; Mizokami, Akiko; Zhao, Jin; Takahashi, Ichiro; Takeuchi, Hiroshi; Hirata, Masato.

In: Cellular Signalling, Vol. 28, No. 5, 01.05.2016, p. 425-437.

Research output: Contribution to journalArticle

@article{8a1a60a5518b4165b5e4c05613eb9b0c,
title = "Differential role of SNAP-25 phosphorylation by protein kinases A and C in the regulation of SNARE complex formation and exocytosis in PC12 cells",
abstract = "The final step of regulated exocytosis, membrane fusion, is mediated by formation of the SNARE complex by syntaxin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and VAMP (vesicle-associated membrane protein). Phosphorylation of SNARE and accessory proteins contributes to regulation of exocytosis. We previously identified residues of SNAP-25 phosphorylated by protein kinase A (PKA) and PKC. However, the physiological role of SNAP-25 phosphorylation in exocytosis, in particular with regard to SNARE complex formation, has remained elusive. SNARE complex formation by purified recombinant SNAP-25, syntaxin-1, and VAMP-in vitro was inhibited or promoted as a result of the phosphorylation at Thr138 by PKA or at Ser187 by PKC, respectively. SNARE complex formation in intact PC12 cells was similarly inhibited by forskolin (activator of PKA) and promoted by phorbol 12-myristate 13-acetate (PMA, activator of PKC). Noradrenaline secretion from PC12 cells induced by a high K+ concentration was enhanced by forskolin or PMA. Stable depletion of SNAP-25 inhibited high-K+-induced noradrenaline secretion. Forced expression of WT SNAP-25 restored the secretory response of the SNAP-25-depleted cells to high-K+, and this response was enhanced by forskolin or PMA. Expression of the nonphosphorylatable T138A or S187A mutants of SNAP-25 similarly rescued the secretory response to high-K+, but the augmentation of this response by forskolin was more pronounced in the cells expressing SNAP-25 (T138A) than in those expressing SNAP-25 (WT), whereas that by PMA was less pronounced in those expressing SNAP-25 (S187A). Our results thus suggest that SNAP-25 phosphorylation by PKA or PKC contributes differentially to the control of exocytosis in PC12 cells by regulating SNARE complex formation.",
author = "Jing Gao and Makiko Hirata and Akiko Mizokami and Jin Zhao and Ichiro Takahashi and Hiroshi Takeuchi and Masato Hirata",
year = "2016",
month = "5",
day = "1",
doi = "10.1016/j.cellsig.2015.12.014",
language = "English",
volume = "28",
pages = "425--437",
journal = "Cellular Signalling",
issn = "0898-6568",
publisher = "Elsevier Inc.",
number = "5",

}

TY - JOUR

T1 - Differential role of SNAP-25 phosphorylation by protein kinases A and C in the regulation of SNARE complex formation and exocytosis in PC12 cells

AU - Gao, Jing

AU - Hirata, Makiko

AU - Mizokami, Akiko

AU - Zhao, Jin

AU - Takahashi, Ichiro

AU - Takeuchi, Hiroshi

AU - Hirata, Masato

PY - 2016/5/1

Y1 - 2016/5/1

N2 - The final step of regulated exocytosis, membrane fusion, is mediated by formation of the SNARE complex by syntaxin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and VAMP (vesicle-associated membrane protein). Phosphorylation of SNARE and accessory proteins contributes to regulation of exocytosis. We previously identified residues of SNAP-25 phosphorylated by protein kinase A (PKA) and PKC. However, the physiological role of SNAP-25 phosphorylation in exocytosis, in particular with regard to SNARE complex formation, has remained elusive. SNARE complex formation by purified recombinant SNAP-25, syntaxin-1, and VAMP-in vitro was inhibited or promoted as a result of the phosphorylation at Thr138 by PKA or at Ser187 by PKC, respectively. SNARE complex formation in intact PC12 cells was similarly inhibited by forskolin (activator of PKA) and promoted by phorbol 12-myristate 13-acetate (PMA, activator of PKC). Noradrenaline secretion from PC12 cells induced by a high K+ concentration was enhanced by forskolin or PMA. Stable depletion of SNAP-25 inhibited high-K+-induced noradrenaline secretion. Forced expression of WT SNAP-25 restored the secretory response of the SNAP-25-depleted cells to high-K+, and this response was enhanced by forskolin or PMA. Expression of the nonphosphorylatable T138A or S187A mutants of SNAP-25 similarly rescued the secretory response to high-K+, but the augmentation of this response by forskolin was more pronounced in the cells expressing SNAP-25 (T138A) than in those expressing SNAP-25 (WT), whereas that by PMA was less pronounced in those expressing SNAP-25 (S187A). Our results thus suggest that SNAP-25 phosphorylation by PKA or PKC contributes differentially to the control of exocytosis in PC12 cells by regulating SNARE complex formation.

AB - The final step of regulated exocytosis, membrane fusion, is mediated by formation of the SNARE complex by syntaxin, SNAP-25 (synaptosomal-associated protein of 25 kDa), and VAMP (vesicle-associated membrane protein). Phosphorylation of SNARE and accessory proteins contributes to regulation of exocytosis. We previously identified residues of SNAP-25 phosphorylated by protein kinase A (PKA) and PKC. However, the physiological role of SNAP-25 phosphorylation in exocytosis, in particular with regard to SNARE complex formation, has remained elusive. SNARE complex formation by purified recombinant SNAP-25, syntaxin-1, and VAMP-in vitro was inhibited or promoted as a result of the phosphorylation at Thr138 by PKA or at Ser187 by PKC, respectively. SNARE complex formation in intact PC12 cells was similarly inhibited by forskolin (activator of PKA) and promoted by phorbol 12-myristate 13-acetate (PMA, activator of PKC). Noradrenaline secretion from PC12 cells induced by a high K+ concentration was enhanced by forskolin or PMA. Stable depletion of SNAP-25 inhibited high-K+-induced noradrenaline secretion. Forced expression of WT SNAP-25 restored the secretory response of the SNAP-25-depleted cells to high-K+, and this response was enhanced by forskolin or PMA. Expression of the nonphosphorylatable T138A or S187A mutants of SNAP-25 similarly rescued the secretory response to high-K+, but the augmentation of this response by forskolin was more pronounced in the cells expressing SNAP-25 (T138A) than in those expressing SNAP-25 (WT), whereas that by PMA was less pronounced in those expressing SNAP-25 (S187A). Our results thus suggest that SNAP-25 phosphorylation by PKA or PKC contributes differentially to the control of exocytosis in PC12 cells by regulating SNARE complex formation.

UR - http://www.scopus.com/inward/record.url?scp=84957963424&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84957963424&partnerID=8YFLogxK

U2 - 10.1016/j.cellsig.2015.12.014

DO - 10.1016/j.cellsig.2015.12.014

M3 - Article

C2 - 26721188

AN - SCOPUS:84957963424

VL - 28

SP - 425

EP - 437

JO - Cellular Signalling

JF - Cellular Signalling

SN - 0898-6568

IS - 5

ER -