Direct fabrication of patterned functional ceramic films by soft solution processing without post-firing

Masahiro Yoshimura, Tomoaki Watanabe, Takeshi Fujiwara, Ryo Teranishi

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We are proposing an innovative concept and technology, Soft Solution Processing (SSP) for ceramics, which aims to achieve direct fabrication of shaped, sized, located, oriented ceramic materials from solutions without firing and/or sintering. We have successfully fabricated thin and thick films of BaTiO3, SrTiO3, BaWO4, SrMoO4, LiCoO2, and LiNiO2 by SSP in aqueous solutions from room temperature to 200°C. In these experiments, interfacial reactions between a solid reactant (substrate) and component(s) in a solution have been designed and realized. By locally activating the reaction and moving the reaction point dynamically in these reactions, we can produce patterned ceramics directly in solution without masking, etching, pattern forming, or any post-heating such as firing or sintering. In this paper we present recent results for patterned ceramic films of PbS, CdS, and LiCoO2. The processes used to produce these films are entirely new, and represent the first examples of successful direct patterning of ceramics from solutions. In previous reports, heating processes have been essential for synthesis and/or sintering of powders and precursors to obtain patterns in ceramic materials. Such processes inevitably cost environmentally and economically. In contrast, our method, where no firing is needed, provides an environmentally and economically less expensive alternative.

Original languageEnglish
Pages (from-to)65-72
Number of pages8
JournalUnknown Journal
Volume758
Publication statusPublished - 2003
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Direct fabrication of patterned functional ceramic films by soft solution processing without post-firing'. Together they form a unique fingerprint.

  • Cite this