Discovery of a Rare-Earth-Free Oxide-Ion Conductor Ca3Ga4O9 by Screening through Bond Valence-Based Energy Calculations, Synthesis, and Characterization of Structural and Transport Properties

Yuta Yasui, Eiki Niwa, Masahiro Matsui, Kotaro Fujii, Masatomo Yashima

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


In this work, we have discovered Ca3Ga4O9 as a rare-earth-free oxide-ion conductor by a combined technique of bond valence (BV)-based energy calculations, synthesis, and characterization of structural and transport properties. Here, the energy barriers for oxide-ion migration (Eb) of 217 Ga-containing oxides were calculated by the BV method to screen the candidate materials of oxide-ion conductors. We chose the orthorhombic calcium gallate Ca3Ga4O9 as a candidate of oxide-ion conductors, because Ca3Ga4O9 had a relatively low Eb. Ca3Ga4O9 was synthesized by a solid-state-reaction method. Rietveld analyses of time-of-flight neutron and synchrotron X-ray powder diffraction data of Ca3Ga4O9 indicated an orthorhombic Cmm2 layered crystal structure consisting of Ca18 and (Ga4O9)6 units where the (Ga4O9)6 units form the two-dimensional (2D) corner-sharing GaO4 tetrahedral network. The electromotive force measurements with an oxygen concentration cell showed that the transport numbers of the oxide ion were 0.69 at 1073 K and 0.84 at 973 K in Ca3Ga4O9, which indicates that the major carrier of Ca3Ga4O9 is the oxide ion. The oxide-ion conductivity was estimated to be 1.03(8) × 10-5 S cm-1 at 1073 K. The total electrical conductivity and impedance spectroscopy measurements of this Ca3Ga4O9 sample indicated that the bulk conductivity was much higher than the grain-boundary conductivity and that the total conductivity was equivalent to the bulk conductivity. The bond valence-based energy landscape calculated using the refined crystal parameters of Ca3Ga4O9 indicated 2D oxide-ion diffusion in the layered tetrahedral network [(Ga4O9)6 unit]. It was found that the structural and transport properties of Ca3Ga4O9 are similar to those of LaSrGa3O7 melilite.

Original languageEnglish
Pages (from-to)9460-9468
Number of pages9
JournalInorganic chemistry
Issue number14
Publication statusPublished - Jul 15 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Discovery of a Rare-Earth-Free Oxide-Ion Conductor Ca<sub>3</sub>Ga<sub>4</sub>O<sub>9</sub> by Screening through Bond Valence-Based Energy Calculations, Synthesis, and Characterization of Structural and Transport Properties'. Together they form a unique fingerprint.

Cite this