Distributed dynamic mean shift algorithm for image segmentation

Kohei Inoue, Kiichi Urahama

    Research output: Contribution to journalArticlepeer-review

    Abstract

    A fast and memory-efficient method has been created for the dynamic mean shift (DMS) algorithm, which is an iterative mode-seeking algorithm. Running the standard DMS algorithm requires a large amount of memory because the algorithm dynamically updates all data during iterations. Therefore, it is difficult to use a conventional DMS algorithm for clustering large dataset. This difficulty is overcome by partitioning a dataset into subsets, and the resultant procedure is called a "distributed DMS algorithm", Experimental results on image segmentation show that the distributed DMS algorithm requires less memory than that of the conventionally used DMS algorithm.

    Original languageEnglish
    Pages (from-to)1614-1620
    Number of pages7
    JournalKyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers
    Volume61
    Issue number11
    DOIs
    Publication statusPublished - Nov 2007

    All Science Journal Classification (ASJC) codes

    • Media Technology
    • Computer Science Applications
    • Electrical and Electronic Engineering

    Fingerprint

    Dive into the research topics of 'Distributed dynamic mean shift algorithm for image segmentation'. Together they form a unique fingerprint.

    Cite this