DNA assembly and re-assembly activated by cationic comb-type copolymer

Rui Moriyama, Naohiko Shimada, Arihiro Kano, Atsushi Maruyama

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Guanine-rich oligonucleotides, such as TG4T and TG5T, assemble into a tetramolecular quadruplexes with layers of G-quartets stabilized by coordination to monovalent cations. Association rates of the quadruplexes are extremely slow, likely owing to electrostatic repulsion among the four strands. We have shown that comb-type copolymers with a polycation backbone and abundant hydrophilic graft chains form water-soluble polyelectrolyte complexes with DNA and promote DNA hybridization. Here, we report the effect of cationic comb-type copolymers on the kinetics of tetramolecular quadruplex formation. The copolymer significantly increased the association rate of tetramolecular quadruplexes without altering kinetic effects of metal cations in quadruplex formation. Dissociation rates of the quadruplexes were also accelerated by the copolymer suggesting that the copolymer has chaperone-like activity that reduces the energy barriers associated with dissociation and re-assembly of base pairs. This hypothesis was further supported by the observation that the copolymer activated the strand exchange reaction between the quadruplex and a constituting single-stranded.

Original languageEnglish
Pages (from-to)2351-2358
Number of pages8
JournalBiomaterials
Volume32
Issue number9
DOIs
Publication statusPublished - Mar 1 2011

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Cite this