DNA electrophoresis in designed channels

T. Sakaue

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

We present a simple description on the electrophoretic dynamics of polyelectrolytes going through designed channels with narrow constrictions of slit geometry. By analyzing rheological behaviours of the stuck chain, which is coupled to the effect of solvent flow, three critical electric fields (permeation field E(pre) ∼ N-1, deformation field E(def) ∼ N-3/5 and injection field E(inj) ≃ N0, with N polymerization index) are clarified. Between E (per) and E(inj), the chain migration is dictated by the driven activation process. In particular, at E > E(def), the stuck chain at the slit entrance is strongly deformed, which enhances the rate of the permeation. From these observations, electrophoretic mobility at a given electric field is deduced, which shows non-monotonic dependence on N. For long enough chains, mobility increases with N, in good agreement with experiments. An abrupt change in the electrophoretic flow at a threshold electric field is formally regarded as a nonequilibrium phase transition.

Original languageEnglish
Pages (from-to)477-487
Number of pages11
JournalEuropean Physical Journal E
Volume19
Issue number4
DOIs
Publication statusPublished - Apr 2006

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biophysics
  • Chemistry(all)
  • Materials Science(all)
  • Surfaces and Interfaces

Fingerprint

Dive into the research topics of 'DNA electrophoresis in designed channels'. Together they form a unique fingerprint.

Cite this