Double-labelled in situ hybridization reveals the lack of co-localization of mRNAs for the circadian neuropeptide PDF and FMRFamide in brains of the flies Musca domestica and Drosophila melanogaster

Ayami Matsushima, Katsuhiro Takano, Taichi Yoshida, Yukimasa Takeda, Satoru Yokotani, Yasuyuki Shimohigashi, Miki Shimohigashi

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Many lines of evidence have suggested that neuropeptides other than pigment-dispersing factor (PDF) are involved in regulating insect circadian rhythms, and FMRFamide-related peptides are additional candidates acting as such neuromodulators. Double-immunolabelling in insect brains with anti-crustacean β-PDH and anti-FMRFamide antibodies had previously suggested that insect PDF and FMRFamide-like peptides may coexist in the same cells. However, it is critical for this kind of comparative investigations to use antibodies of proven specificity, to eliminate the possibility of both reciprocal cross-reactivity and the detection of unknown peptides. In the present study, we achieved the cDNA cloning of an fmrf mRNA from the housefly Musca domestica, for which co-localization of FMRFamide and PDF peptides was previously suggested. In order to examine the possible co-expression of this gene with the pdf gene, we carried out double-labelled in situ hybridization for simultaneous detection of both pdf and fmrf mRNAs in housefly, Musca brains. The results clearly indicated that they occur in distinctly different cells. This was also proven for the fruit fly Drosophila melanogaster by similar double-labelled in situ hybridization. The results thus revealed no reason to evoke the physiological release of FMRFamide and PDF peptides from the same neurons.

Original languageEnglish
Pages (from-to)867-877
Number of pages11
JournalJournal of biochemistry
Volume141
Issue number6
DOIs
Publication statusPublished - Jun 1 2007

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Double-labelled in situ hybridization reveals the lack of co-localization of mRNAs for the circadian neuropeptide PDF and FMRFamide in brains of the flies Musca domestica and Drosophila melanogaster'. Together they form a unique fingerprint.

Cite this