Driving conditions of protostellar outflows in different star-forming environments

Koki Higuchi, Masahiro N. Machida, Hajime Susa

Research output: Contribution to journalArticle

Abstract

The evolution of collapsing clouds embedded in different star-forming environments is investigated using three-dimensional non-ideal magnetohydrodynamics simulations considering different cloud metallicities ($\mathrm{\mathit{ Z}}/\, \mathrm{Z}-\odot$ = 0, 10-5, 10-4, 10-3, 10-2, 10-1, and 1) and ionization strengths (Cζ = 0, 0.01, 1, and 10, where Cζ is a coefficient controlling the ionization intensity and Cζ = 1 corresponds to the ionization strength of nearby star-forming regions). With all combinations of these considered values of $\mathrm{\mathit{ Z}}/\, \mathrm{Z}-\odot$ and Cζ, 28 different star-forming environments are prepared and simulated. The cloud evolution in each environment is calculated until the central density reaches $n\approx 10^{16}\, {\rm cm}^{-3}$ just before protostar formation, and the outflow driving conditions are derived. An outflow appears when the (first) adiabatic core forms in a magnetically active region where the magnetic field is well coupled with the neutral gas. In cases where outflows are driven, their momentum fluxes are always comparable to the observations of nearby star-forming regions. Thus, these outflows should control the mass growth of the protostars as in the local universe. Roughly, an outflow appears when $\mathrm{\mathit{ Z}}/\, \mathrm{Z}-\odot \gt 10^{-4}$ and Cζ ≥ 0.01. It is expected that the transition of the star formation mode from massive stars to normal solar-type stars occurs when the cloud metallicity is enhanced to the range of $\mathrm{\mathit{ Z}}/\, \mathrm{Z}-\odot \approx 10^{-4}$-10-3, above which relatively low-mass stars would preferentially appear as a result of strong mass ejection.

Original languageEnglish
Pages (from-to)3741-3754
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Volume486
Issue number3
DOIs
Publication statusPublished - Jan 1 2019

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Driving conditions of protostellar outflows in different star-forming environments'. Together they form a unique fingerprint.

  • Cite this