TY - JOUR
T1 - Dynamic optimization of host defense, immune memory, and post-infection pathogen levels in mammals
AU - Shudo, Emi
AU - Iwasa, Yoh
PY - 2004/5/7
Y1 - 2004/5/7
N2 - When attacked by pathogens, higher vertebrates produce specific immune cells that fight against them. We here studied the host's optimal schedule of specific immune cell production. The damage caused by the pathogen increases with the pathogen amount in the host integrated over time. On the other hand, there is also a cost incurred by the production of specific immune cells, not only in terms of the energy needed to produce and maintain the cells, but also with respect to damages sustained by the host's body as a result of immune activity. The optimal strategy of the host is the one that minimizes the total cost, defined as a weighted sum of the damage caused by pathogens and the costs caused by the specific immune cells. The problem is solved by using Pontryagin's maximum principle and dynamic programming. The optimal defense schedule is typically as follows: In the initial phase after infection, immune cells are produced at the fastest possible rate. The amount of pathogen increases temporarily but is eventually suppressed. When the pathogen amount is suppressed to a sufficiently low level, the immune cell number decreases and converges to a low steady level, which is maintained by alternately switching between fastest production and no production. We examine the effect of time delay required to have fully active immune cells by comparing cases with different number of rate limiting steps before producing immune cells. We examine the effect of the duration of time (time delay) required before full-scale production of active immune cells by comparing cases with different numbers of rate-limiting steps before immune-cell production. We also discuss the role of immune memory based on the results of the optimal immune reaction.
AB - When attacked by pathogens, higher vertebrates produce specific immune cells that fight against them. We here studied the host's optimal schedule of specific immune cell production. The damage caused by the pathogen increases with the pathogen amount in the host integrated over time. On the other hand, there is also a cost incurred by the production of specific immune cells, not only in terms of the energy needed to produce and maintain the cells, but also with respect to damages sustained by the host's body as a result of immune activity. The optimal strategy of the host is the one that minimizes the total cost, defined as a weighted sum of the damage caused by pathogens and the costs caused by the specific immune cells. The problem is solved by using Pontryagin's maximum principle and dynamic programming. The optimal defense schedule is typically as follows: In the initial phase after infection, immune cells are produced at the fastest possible rate. The amount of pathogen increases temporarily but is eventually suppressed. When the pathogen amount is suppressed to a sufficiently low level, the immune cell number decreases and converges to a low steady level, which is maintained by alternately switching between fastest production and no production. We examine the effect of time delay required to have fully active immune cells by comparing cases with different number of rate limiting steps before producing immune cells. We examine the effect of the duration of time (time delay) required before full-scale production of active immune cells by comparing cases with different numbers of rate-limiting steps before immune-cell production. We also discuss the role of immune memory based on the results of the optimal immune reaction.
UR - http://www.scopus.com/inward/record.url?scp=1842477301&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1842477301&partnerID=8YFLogxK
U2 - 10.1016/j.jtbi.2003.12.001
DO - 10.1016/j.jtbi.2003.12.001
M3 - Article
C2 - 15064080
AN - SCOPUS:1842477301
SN - 0022-5193
VL - 228
SP - 17
EP - 29
JO - Journal of Theoretical Biology
JF - Journal of Theoretical Biology
IS - 1
ER -