Dynamic scene shape reconstruction using a single structured light pattern

Hiroshi Kawasaki, Ryo Furukawa, Ryusuke Sagawa, Yasushi Yagi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

134 Citations (Scopus)

Abstract

3D acquisition techniques to measure dynamic scenes and deformable objects with little texture are extensively researched for applications like the motion capturing of human facial expression. To allow such measurement, several techniques using structured light have been proposed. These techniques can be largely categorized into two types. The first involves techniques to temporally encode positional information of a projector's pixels using multiple projected patterns, and the second involves techniques to spatially encode positional information into areas or color spaces. Although the former allows dense reconstruction with a sufficient number of patterns, it has difficulty in scanning objects in rapid motion. The latter technique uses only a single pattern, so this problem can be resolved, however, it often uses complex patterns or color intensities, which are weak to noise, shape distortions, or textures. Thus, it remains an open problem to achieve dense and stable 3D acquisition in real cases. In this paper, we propose a technique to achieve dense shape reconstruction that requires only a single-frame image of a grid pattern. The proposed technique also has the advantage of being robust in terms of image processing.

Original languageEnglish
Title of host publication26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
DOIs
Publication statusPublished - 2008
Externally publishedYes
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR - Anchorage, AK, United States
Duration: Jun 23 2008Jun 28 2008

Publication series

Name26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

Other

Other26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
CountryUnited States
CityAnchorage, AK
Period6/23/086/28/08

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition
  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'Dynamic scene shape reconstruction using a single structured light pattern'. Together they form a unique fingerprint.

Cite this