TY - JOUR
T1 - Dynamics of North American sector ionospheric and thermospheric response during the November 2004 superstorm
AU - Erickson, P. J.
AU - Goncharenko, L. P.
AU - Nicolls, M. J.
AU - Ruohoniemi, M.
AU - Kelley, M. C.
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2010/3
Y1 - 2010/3
N2 - We present a study of ionospheric and thermospheric response during a November 9-10, 2004 major geomagnetic storm event (DsT ∼-300 nT). We utilize the North American sector longitude chain of incoherent scatter radars at Arecibo, Millstone Hill, and Sondrestrom, operating as part of a coordinated international mesosphere/lower thermosphere coupling study experiment. Total electron content (TEC) determinations from global positioning system (GPS) ground receivers, ground magnetometer traces from the Canadian CANOPUS array, Defense Meteorological Satellite Platform (DMSP) topside data, and global convection patterns from the SuperDARN radar network are analyzed to place the detailed radar data in proper mesoscale context. The plasmaspheric boundary layer (PBL) expanded greatly in the dusk sector during ring current intensification to span more than 25° of magnetic latitude, reaching as far south as 30° invariant latitude. Strong sub-auroral polarization stream velocities of more than 1 km/s were accompanied by large upwards thermal O+ fluxes to the overlying magnetosphere. The large PBL expansion subsequently exposed both Millstone Hill and Sondrestrom to the auroral convection pattern, which developed a complex multicell and reverse convection response under strongly northward IMF conditions during a period of global interplanetary electric field penetration. Large traveling atmospheric and ionospheric disturbances caused significant neutral wind and ion velocity surges in the mid-latitude and tropical ionosphere and thermosphere, with substorm activity launching equatorward neutral wind enhancements and subsequent mid-latitude dynamo responses at Millstone Hill. However, ionosphere and thermosphere observations at Arecibo point to significant disturbance propagation modification in the post-dusk sector PBL region.
AB - We present a study of ionospheric and thermospheric response during a November 9-10, 2004 major geomagnetic storm event (DsT ∼-300 nT). We utilize the North American sector longitude chain of incoherent scatter radars at Arecibo, Millstone Hill, and Sondrestrom, operating as part of a coordinated international mesosphere/lower thermosphere coupling study experiment. Total electron content (TEC) determinations from global positioning system (GPS) ground receivers, ground magnetometer traces from the Canadian CANOPUS array, Defense Meteorological Satellite Platform (DMSP) topside data, and global convection patterns from the SuperDARN radar network are analyzed to place the detailed radar data in proper mesoscale context. The plasmaspheric boundary layer (PBL) expanded greatly in the dusk sector during ring current intensification to span more than 25° of magnetic latitude, reaching as far south as 30° invariant latitude. Strong sub-auroral polarization stream velocities of more than 1 km/s were accompanied by large upwards thermal O+ fluxes to the overlying magnetosphere. The large PBL expansion subsequently exposed both Millstone Hill and Sondrestrom to the auroral convection pattern, which developed a complex multicell and reverse convection response under strongly northward IMF conditions during a period of global interplanetary electric field penetration. Large traveling atmospheric and ionospheric disturbances caused significant neutral wind and ion velocity surges in the mid-latitude and tropical ionosphere and thermosphere, with substorm activity launching equatorward neutral wind enhancements and subsequent mid-latitude dynamo responses at Millstone Hill. However, ionosphere and thermosphere observations at Arecibo point to significant disturbance propagation modification in the post-dusk sector PBL region.
UR - http://www.scopus.com/inward/record.url?scp=76549109802&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76549109802&partnerID=8YFLogxK
U2 - 10.1016/j.jastp.2009.04.001
DO - 10.1016/j.jastp.2009.04.001
M3 - Article
AN - SCOPUS:76549109802
VL - 72
SP - 292
EP - 301
JO - Journal of Atmospheric and Solar-Terrestrial Physics
JF - Journal of Atmospheric and Solar-Terrestrial Physics
SN - 1364-6826
IS - 4
ER -