Dynamics of species in a nonautonomous Lotka-Volterra system

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

In this paper, we study a Lotka-Volterra model with two predators and one prey. The explorations involve the permance, extinction, the existence, uniqueness and global asymptotic stability of a positive solution.

Original languageEnglish
Pages (from-to)45-54
Number of pages10
JournalActa Mathematica Academiae Paedagogicae Nyiregyhaziensis
Volume25
Issue number1
Publication statusPublished - Jun 22 2009
Externally publishedYes

Fingerprint

Lotka-Volterra Model
Lotka-Volterra System
Nonautonomous Systems
Global Asymptotic Stability
Predator
Prey
Extinction
Positive Solution
Existence and Uniqueness

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Education

Cite this

Dynamics of species in a nonautonomous Lotka-Volterra system. / Viet Ton, T. A.

In: Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, Vol. 25, No. 1, 22.06.2009, p. 45-54.

Research output: Contribution to journalArticle

@article{827482b558044473b5f348a632ddc07e,
title = "Dynamics of species in a nonautonomous Lotka-Volterra system",
abstract = "In this paper, we study a Lotka-Volterra model with two predators and one prey. The explorations involve the permance, extinction, the existence, uniqueness and global asymptotic stability of a positive solution.",
author = "{Viet Ton}, {T. A.}",
year = "2009",
month = "6",
day = "22",
language = "English",
volume = "25",
pages = "45--54",
journal = "Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis",
issn = "0866-0182",
publisher = "Nyregyhazi Foiskola/College of Nyregyhaza",
number = "1",

}

TY - JOUR

T1 - Dynamics of species in a nonautonomous Lotka-Volterra system

AU - Viet Ton, T. A.

PY - 2009/6/22

Y1 - 2009/6/22

N2 - In this paper, we study a Lotka-Volterra model with two predators and one prey. The explorations involve the permance, extinction, the existence, uniqueness and global asymptotic stability of a positive solution.

AB - In this paper, we study a Lotka-Volterra model with two predators and one prey. The explorations involve the permance, extinction, the existence, uniqueness and global asymptotic stability of a positive solution.

UR - http://www.scopus.com/inward/record.url?scp=67249128863&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67249128863&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:67249128863

VL - 25

SP - 45

EP - 54

JO - Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis

JF - Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis

SN - 0866-0182

IS - 1

ER -