Early G2/M checkpoint failure as a molecular mechanism underlying etoposide-induced chromosomal aberrations

Shinichiro Nakada, Yoko Katsuki, Issei Imoto, Tetsuji Yokoyama, Masayuki Nagasawa, Johji Inazawa, Shuki Mizutani

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

Topoisomerase II (Topo II) inhibitors are cell cycle-specific DNA-damaging agents and often correlate with secondary leukemia with chromosomal translocations involving the mixed-lineage leukemia/myeloid lymphoid leukemia (MLL) gene on chromosome 11 band q23 (11q23). In spite of the clinical importance, the molecular mechanism for this chromosomal translocation has yet to be elucidated. In this study, we employed 2-color FISH and detected intracellular chromosomal translocations induced by etoposide treatment. Cells such as ataxia-telangiectasia mutated-deficient fibroblasts and U2OS cells, in which the early G2/M checkpoint after treatment with low concentrations of etoposide has been lost, executed mitosis with etoposide-induced DNA double-strand breaks, and 2-color FISH signals located on either side of the MLL gene were segregated in the postmitotic G1 phase. Long-term culture of cells that had executed mitosis under etoposide treatment showed frequent structural abnormalities of chromosome 11. These findings provide convincing evidence for Topo II inhibitor-induced 11q23 translocation. Our study also suggests an important role of the early G2/M checkpoint in preventing fixation of chromosomal abnormalities and reveals environmental and genetic risk factors for the development of chromosome 11 translocations, namely, low concentrations of Topo II inhibitors and dysfunctional early G2/M checkpoint control.

Original languageEnglish
Pages (from-to)80-89
Number of pages10
JournalJournal of Clinical Investigation
Volume116
Issue number1
DOIs
Publication statusPublished - Jan 2006
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Early G2/M checkpoint failure as a molecular mechanism underlying etoposide-induced chromosomal aberrations'. Together they form a unique fingerprint.

Cite this