Abstract
We study electrical properties of metal/Ge contacts with an atomically controlled interface, and compare them with those with a disordered one, where atomically controlled interfaces can be demonstrated by using Fe3 Si/Ge (111) contacts. We find that the Schottky barrier height of Fe3 Si/n-Ge (111) contacts is unexpectedly lower than those induced by the strong Fermi-level pinning at other metal/n-Ge contacts. For Fe3 Si/p-Ge (111) contacts, we identify clear rectifying behavior in I-V characteristics at low temperatures, which is also different from I-V features due to the strong Fermi-level pinning at other metal/p-Ge contacts. These results indicate that there is an extrinsic contribution such as dangling bonds to the Fermi-level pinning effect at the directly connected metal/Ge contacts.
Original language | English |
---|---|
Article number | 162104 |
Journal | Applied Physics Letters |
Volume | 96 |
Issue number | 16 |
DOIs | |
Publication status | Published - Apr 19 2010 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)