Abstract
The aim of this study is to clarify the effects of number density and initial diameter of bubble nuclei on global behavior of cavitating flow around an isolated Clark Y hydrofoil in numerical simulation. Measurements of the number density distributions of bubble nuclei are carried out, then the number density and averaged diameter of bubble nuclei are calculated from the measurement results and are used for the parameters of cavitation models in the numerical analysis. The numerical results are compared with those obtained with defaulted values provided by a solver. As a result, it is confirmed that the number density of bubble nuclei affects time-averaged pressure distribution on the blade surface, and the fluctuation of the lift coefficient and the cavitation area. In addition, the location of the cavity leading edge in the case of using the parameters obtained by the measurements moves apparently downstream, resulting in a better agreement with actual one.
Original language | English |
---|---|
Publication status | Published - 2017 |
Event | 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC 2017 - Maui, United States Duration: Dec 16 2017 → Dec 21 2017 |
Conference
Conference | 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC 2017 |
---|---|
Country/Territory | United States |
City | Maui |
Period | 12/16/17 → 12/21/17 |
All Science Journal Classification (ASJC) codes
- Mechanical Engineering