TY - JOUR
T1 - Effect of CaO/SiO2 ratio on surface tension of CaO-SiO2-Al2O3-MgO melts
AU - Sukenaga, Sohei
AU - Higo, Tomoyuki
AU - Shibata, Hiroyuki
AU - Saito, Noritaka
AU - Nakashima, Kunihiko
PY - 2015/1/1
Y1 - 2015/1/1
N2 - The effect of the CaO/SiO2 molar ratio on the surface tension of calcium aluminosilicate melts containing magnesia (CaO-SiO2-Al2O3-MgO) has been explored using a ring method at 1 723-1 823 K; the Al2O3 and MgO contents were approximately 12 and 8 mol%, respectively. The CaO/SiO2 molar ratio of the samples was varied in the range of 1.1-1.7. The surface tension of the CaO-SiO2-Al2O3-MgO system simultaneously increased upon increasing the CaO/SiO2 molar ratio. The present data were compared with the surface tension of the binary calcium silicate (CaO-SiO2) and the ternary calcium aluminosilicate (CaO-SiO2-Al2O3) melts reported in the literatures. The surface tension of the present CaO-SiO2-Al2O3-MgO melts was higher than those of the binary calcium silicate melts and slightly lower than those of the ternary calcium aluminosilicate melts when the polymerization degrees of the melts were comparable. The change in the surface tension was considered from the viewpoint of the local structure of oxygen atoms at the melt surface. Oxygen atoms, which require higher coordination by cations in the bulk, may tend to lose their neighbors at the surface of the melts, which can result in the formation of unsatisfied bonds at the surface. An increase in the number of unsatisfied bonds can yield an increase in the surface tension.
AB - The effect of the CaO/SiO2 molar ratio on the surface tension of calcium aluminosilicate melts containing magnesia (CaO-SiO2-Al2O3-MgO) has been explored using a ring method at 1 723-1 823 K; the Al2O3 and MgO contents were approximately 12 and 8 mol%, respectively. The CaO/SiO2 molar ratio of the samples was varied in the range of 1.1-1.7. The surface tension of the CaO-SiO2-Al2O3-MgO system simultaneously increased upon increasing the CaO/SiO2 molar ratio. The present data were compared with the surface tension of the binary calcium silicate (CaO-SiO2) and the ternary calcium aluminosilicate (CaO-SiO2-Al2O3) melts reported in the literatures. The surface tension of the present CaO-SiO2-Al2O3-MgO melts was higher than those of the binary calcium silicate melts and slightly lower than those of the ternary calcium aluminosilicate melts when the polymerization degrees of the melts were comparable. The change in the surface tension was considered from the viewpoint of the local structure of oxygen atoms at the melt surface. Oxygen atoms, which require higher coordination by cations in the bulk, may tend to lose their neighbors at the surface of the melts, which can result in the formation of unsatisfied bonds at the surface. An increase in the number of unsatisfied bonds can yield an increase in the surface tension.
UR - http://www.scopus.com/inward/record.url?scp=84936991087&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936991087&partnerID=8YFLogxK
U2 - 10.2355/isijinternational.55.1299
DO - 10.2355/isijinternational.55.1299
M3 - Article
SN - 0915-1559
VL - 55
SP - 1299
EP - 1304
JO - Transactions of the Iron and Steel Institute of Japan
JF - Transactions of the Iron and Steel Institute of Japan
IS - 6
ER -