Effect of continuous rotation evolutional control on the pitting corrosion resistance of anodized aluminum-magnesium alloy

Hiroaki Nakano, In Joon Son, Hideki Ohara, Satoshi Oue, Katsuaki Nakamura, Hisaaki Fukushima

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The effect of continuous rotation evolutional controHCREO) on the pitting corrosion resistance of anodized Al-Mg alloy was investigated by electrochemical techniques in a solution containing 0.2 mol/L of AICI3 and by surface analysis. The potentials for pitting corrosion of anodized Al-Mg alloy was evidently shifted to the less noble direction by CREO and the time required before initiating pitting corrosion was shorter with CREO, indicating that the corrosion resistance with CREO was worse than without. The precipitates of Fe-Al intermetallic compounds remained in anodic oxide films of Al-Mg alloy. Cracks occurred in the anodic oxide films through the precipitates during initial pitting corrosion. The pitting corrosion was accelerated by cracks. The internal stress present in the anodic oxide films of the alloys with CREO was higher than without. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from the CREO.

    Original languageEnglish
    Pages (from-to)1985-1991
    Number of pages7
    JournalMaterials Transactions
    Volume50
    Issue number8
    DOIs
    Publication statusPublished - Aug 2009

    All Science Journal Classification (ASJC) codes

    • Materials Science(all)
    • Condensed Matter Physics
    • Mechanics of Materials
    • Mechanical Engineering

    Fingerprint

    Dive into the research topics of 'Effect of continuous rotation evolutional control on the pitting corrosion resistance of anodized aluminum-magnesium alloy'. Together they form a unique fingerprint.

    Cite this